Skip to main content
Log in

Fast, repeatable and precise magnetic actuation in ambient environments at the micrometer scale

  • Research Paper
  • Published:
Journal of Micro-Bio Robotics Aims and scope Submit manuscript

Abstract

This work aims at increasing the velocity of micrometer scale particles controlled by non contact magnetic actuation systems. The particles are placed in an ambient environment (i.e. in air) to minimize the drag forces. However this approach raises two major issues: the repeatability and the precision of position are difficult to obtain in ambient environments due to the adhesion force between the substrate and the particle. This work proposes to use first a magnetic torque to provoke in-plane rotation of the particle to overcome adhesion between the particle and the substrate. Then a magnetic force is applied to induce the movement of the particle. To ensure that the static friction is broken and that the position of the particle can be controlled precisely a current pulse actuation mode is used. A dedicated closed loop control law which controls both the amplitude and the duration of the current simultaneously is proposed to ensure accurate positioning of the particle. Speed during pulse can reach 176 mm/s (more than 350 body lengths per second) in open loop on silicon substrates. Adhesion is overcome in 95% of the tests using the magnetic torque, compared to 66% using classical approaches. Precision of positioning of less than 20% of the size of the particle can be reached. The approach proposed in this paper is generic so that it can be easily transposed to other systems in the literature. The large number of experimental tests provides a deep understanding of the possibilities and challenges of magnetic actuation in ambient environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gauthier M, Régnier S (2011) Robotic micro-assembly. Wiley, Hoboken

    Google Scholar 

  2. Kharboutly M, Gauthier M (2013) High speed closed loop control of a dielectrophoresis-based system. In: 2013 IEEE international conference on robotics and automation. https://doi.org/10.1109/ICRA.2013.6630761. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6630761&isnumber=6630547, pp 1446–1451

  3. Chowdhury S, Jing W, Cappelleri D J (2015) Controlling multiple microrobots: recent progress and future challenges. J Micro-Bio Robot 10(1–4):1–11

    Article  Google Scholar 

  4. Chaillet N, Régnier S (2013) Microrobotics for micromanipulation. Wiley, Hoboken

    Book  Google Scholar 

  5. Bouchebout S, Bolopion A, Abrahamians J -O, Régnier S (2012) An overview of multiple dof magnetic actuated micro-robots. J Micro-Nano Mechatron 7(4):97–113

    Article  Google Scholar 

  6. Diller E, Sitti M (2015) Untethered magnetic micromanipulation. Micro-and Nanomanipulation Tools

  7. Feng L, Turan B, Ningga U, Arai F (2014) Three dimensional rotation of bovine oocyte by using magnetically driven on-chip robot. In: 2014 IEEE/RSJ international conference on intelligent robots and systems, Chicago. https://doi.org/10.1109/IROS.2014.6943225. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6943225&isnumber=6942370, pp 4668–4673

  8. Khalil I S M, Ferreira P, Eleutério R, de Korte C L, Misra S (2014) Magnetic-based closed-loop control of paramagnetic microparticles using ultrasound feedback. In: 2014 IEEE international conference on robotics and automation (ICRA), Hong Kong. https://doi.org/10.1109/ICRA.2014.6907411. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6907411&isnumber=6906581, pp 3807–3812

  9. Mahoney AW, Nelson N D, Peyer K E, Nelson B J, Abbott J J (2014) Behavior of rotating magnetic microrobots above the step-out frequency with application to control of multi-microrobot systems. Appl Phys Lett 104(14):144101

    Article  Google Scholar 

  10. Torres NA, Popa DO (2015) Cooperative control of multiple untethered magnetic microrobots using a single magnetic field source. In: 2015 IEEE international conference on automation science and engineering (CASE), Gothenburg. https://doi.org/10.1109/CoASE.2015.7294330. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7294330&isnumber=7294025, pp 1608–1613

  11. Tung H -W, Maffioli M, Frutiger D R, Sivaraman K M, Pane S, Nelson B J (2014) Polymer-based wireless resonant magnetic microrobots. IEEE Trans Robot 30(1):26–32

    Article  Google Scholar 

  12. Floyd S, Pawashe C, Sitti M (2008) An untethered magnetically actuated micro-robot capable of motion on arbitrary surfaces. In: 2008 IEEE international conference on robotics and automation, Pasadena. https://doi.org/10.1109/ROBOT.2008.4543243. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4543243&isnumber=4543169, pp 419–424

  13. Dkhil M, Kharboutly M, Bolopion A, Régnier S, Gauthier M (2017) Closed-loop control of a magnetic particle at the air - liquid interface. IEEE Trans Autom Sci Eng 14(3):1387– 1399

    Article  Google Scholar 

  14. Kummer M P, Abbott J J, Kratochvil B E, Borer R, Sengul A, Nelson B J (2010) OctoMag: an electromagnetic system for 5-DOF wireless micromanipulation. IEEE Trans Robot 26(6):1006– 1017

    Article  Google Scholar 

  15. Diller E, Giltinan J, Jena P, Sitti M (2013) Three dimensional independent control of multiple magnetic microrobots. In: 2013 IEEE international conference on robotics and automation, Karlsruhe. https://doi.org/10.1109/ICRA.2013.6630929. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6630929&isnumber=6630547, pp 2576–2581

  16. Ye Z, Diller E, Sitti M (2012) Micro-manipulation using rotational fluid flows induced by remote magnetic micro-manipulators. J. Appl. Phys. 112(6):064912

    Article  Google Scholar 

  17. El-Gazzar AG, Al-Khouly LE, Klingner A, Misra S, Khalil ISM (2015) Non-contact manipulation of microbeads via pushing and pulling using magnetically controlled clusters of paramagnetic microparticles. In: 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS), Hamburg. https://doi.org/10.1109/IROS.2015.7353460. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7353460&isnumber=7353104, pp 778–783

  18. Chung S E, Dong X, Sitti M (2015) Three-dimensional heterogeneous assembly of coded microgels using an untethered mobile microgripper. Lab Chip 15(7):1667–1676

    Article  Google Scholar 

  19. Salmon H, Couraud L, Hwang G (2013) Swimming property characterizations of magnetic polarizable microrobots. In: 2013 IEEE international conference on robotics and automation, Karlsruhe. https://doi.org/10.1109/ICRA.2013.6631369. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6631369&isnumber=6630547, pp 5520–5526

  20. Sitti M, Ceylan H, Hu W, Giltinan J, Turan M, Yim S, Diller E (2015) Biomedical applications of untethered mobile milli/microrobots. Proc IEEE 103(2):205–224

    Article  Google Scholar 

  21. Ivan I, Hwang G, Agnus J, Chaillet N, Régnier S (2013) Nist and ieee challenge for magpier: the fastest mobile microrobots in the world. IEEE Robot Autom Mag 20(2):63–70

    Article  Google Scholar 

  22. Bouchebout S, Bolopion A, Gauthier M, Régnier S (2014) Position control of a ferromagnetic micro-particle in a dry environment. In: IEEE/ASME International conference on advanced intelligent mechatronics, Besancon. https://doi.org/10.1109/AIM.2014.6878037. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6878037&isnumber=6878036, pp 1–6

  23. Petruska A J, Edelmann J, Nelson B J (2017) Model-based calibration for magnetic manipulation. IEEE Trans Magn 53(7):1–6

    Article  Google Scholar 

  24. Mulyokov K, Korznikov G, Abdulov R, Valiev R (1990) Magnetic hysteretic properties of submicron grained nickel and their variations upon annealing. J Magn Magn Mater 89(1–2):207– 213

    Article  Google Scholar 

  25. Abbott J J, Peyer K E, Lagomarsino M C, Zhang L, Dong L X, Kaliakatsos I K, Nelson B J (2009) How should microrobots swim? Int J Robot Res 28(11–12):1434–1447

    Article  Google Scholar 

  26. Abbott J J, Nagy Z, Beyeler F, Nelson B J (2007) Robotics in the small, part i: Microrobotics. IEEE Robot Autom Mag 14(2):92–103

    Article  Google Scholar 

  27. Photron (2015) High speed camera products. www.photron.com

  28. Jing W, Chen X, Lyttle S, Fu Z, Shi Y, Cappelleri DJ (2011) A magnetic thin film microrobot with two operating modes. In: 2011 IEEE international conference on robotics and automation, Shanghai. https://doi.org/10.1109/ICRA.2011.5980072. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5980072&isnumber=5979525, pp 96–101

  29. Clarke D, Mohtadi C, Tuffs P (1987) Generalized predictive control part i. the basic algorithm. Automatica 23(2):137– 148

    Article  MATH  Google Scholar 

  30. Frutiger D R, Vollmers K, Kratochvil B E, Nelson B J (2010) Small, fast, and under control: wireless resonant magnetic micro-agents. Int J Robot Res 29(5):613–636

    Article  Google Scholar 

  31. Steager E B, Selman Sakar M, Magee C, Kennedy M, Cowley A, Kumar V (2013) Automated biomanipulation of single cells using magnetic microrobots. Int J Robot Res 32(3):346–359

    Article  Google Scholar 

  32. Schürle S et al (2013) Three-dimensional, automated magnetic biomanipulation with subcellular resolution. https://doi.org/10.1109/ICRA.2013.6630762. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6630762&isnumber=6630547

  33. Giltinan J, Diller E, Sitti M (2016) Programmable assembly of heterogeneous microparts by an untethered mobile capillary microgripper. Lab Chip 16(22):4445–4457

    Article  Google Scholar 

  34. Shamma J S (2001) Gain scheduling. Wiley, Hoboken

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the Labex ACTION project (contract “ANR-11-LABX-01-01”), by the “Région Franche Comté” and by the French RENATECH network and its FEMTO-ST technological facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aude Bolopion.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MP4 529 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolopion, A., Bouchebout, S. & Régnier, S. Fast, repeatable and precise magnetic actuation in ambient environments at the micrometer scale. J Micro-Bio Robot 13, 55–66 (2017). https://doi.org/10.1007/s12213-017-0101-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12213-017-0101-y

Keywords

Navigation