Skip to main content
Log in

Optimizing the speed of single infrared-laser-induced thermocapillary flows micromanipulation by using design of experiments

  • Research Article
  • Published:
Journal of Micro-Bio Robotics Aims and scope Submit manuscript

Abstract

Laser-induced thermocapillary convection flows is a promising technique to manipulate micrometer size particles. Several parameters, such as the laser exposure time, the laser-particle distance, the particles’ diameter and the water layer thickness can be used to control the particles’ speed. This article deals with the study of the influence of the control parameters in the manipulation process using a systematic method: Design of Experiments (DoE). Additionally, a mathematical speed model of the manipulated particle as function of the mentioned parameters is proposed in order to enhance the manipulation accuracy and speed paving the way toward future works related to control strategies. Acid-washed glass beads ranging from 50 up to 150 microns were used for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gauthier M, Andreff N, Dombre E (2014) Intracorporeal robotics. From milliscale towards nanoscale. Wiley edn

  2. Xie H, Onal CD, Régnier S, Sitti M (2011) Atomic force microscopy based nanorobotics, springer tracts in advanced robotics, vol. 71, modelling, simulation setup building and experiments series edn

  3. Bøggild P (2011) Micro and nano techniques for the handling of biological samples, p 141

  4. Ongaro F, Scheggi S, Yoon C, van den Brink F, Oh SH, Gracias DH, Misra S (2016) J Micro-Bio Rob pp 1–8

  5. Pieters RS, Tung HW, Nelson BJ (2017) Microrobots for active object manipulation. Springer International Publishing, pp 61– 72

  6. Thakur A, Chowdhury S, Svec P, Wang C, Losert W, Gupta SK (2014) Int J Robot Res p 0278364914523690

  7. Arai F, Maruyama H, Sakami T, Ichikawa A, Fukuda T (2003) IEEE/ASME Trans Mechatron 8 (1):3

    Article  Google Scholar 

  8. Voldman J (2006) Annu Rev Biomed Eng 8:425

    Article  Google Scholar 

  9. Čemažar J, Miklavcic D, Kotnik T (2013) J Microelectron Electron Compon Mater 43:143

    Google Scholar 

  10. Kharboutly M, Gauthier M (2013). In: IEEE International Conference on Robotics and Automation, pp 1438–1443

  11. Zemanek J, Drs J, Hurak Z (2014) In: IEEE/ASME international conference on advanced intelligent mechatronics, pp 19–25

  12. Jiang C, Mills JK (2015) IEEE/ASME Trans Mechatron 20(5):2350

    Article  Google Scholar 

  13. Dkhil M, Kharboutly M, Bolopion A, Régnier S., Gauthier M (2015) IEEE Transactions on Automation Science and Engineering pp 1–13

  14. Onda K, Arai F (2012)

  15. Li X, Yang H, Wang J, Sun D (2015) Automatica 55:279

    Article  Google Scholar 

  16. Chen H, Sun D (2012) IEEE Trans Robot 28(5):1069

    Article  Google Scholar 

  17. Yang H, Gou X, Wang Y, Fahmy TM, Leung AYH, Lu J, Sun D (2015) Biophys J 108 (7):1645

    Article  Google Scholar 

  18. Lin SCS, Mao X, Huang TJ (2012) Lab Chip 12(16):2766

    Article  Google Scholar 

  19. Burns MA, Mastrangelo CH, Sammarco TS, Man FP, Webster JR, Johnsons BN, Foerster B, Jones D, Fields Y, Kaiser AR, Burke DT (1996)

  20. Schatz MF, Neitzel GP (2001) Ann Rev Fluid Mech 33(1):93. doi:10.1146/annurev.fluid.33.1.93

    Article  Google Scholar 

  21. Hu W, Ishii KS, Ohta AT (2011) Appl Phys Lett 99(9):094103. doi:10.1063/1.3631662

    Article  Google Scholar 

  22. Hu W, Fan Q, Ohta AT (2013) Lab Chip 13(12):2285. doi:10.1039/C3LC50389E

    Article  Google Scholar 

  23. Hu W, Fan Q, Ohta AT (2014) Robot Biomimetics 1(1):1. doi:10.1186/s40638-014-0014-3

    Article  Google Scholar 

  24. Vela E (2010) Non-contact microscale manipulation using laser-induced convection flows. Ph.D. thesis, Universite Pierre et Marie Currie

  25. Quispe J, Muñoz E, Vela E (2016) Appl Phys Lett 109(12):124102

    Article  Google Scholar 

  26. Quispe JE, Inga JC, Muñoz E M, Régnier S, Vela E (2016) In: International Conference on manipulation automation and robotics at small scales (MARSS), (IEEE), pp. 1–6

  27. Da Costa G (1993) Appl Opt 32(12):2143

    Article  Google Scholar 

  28. Miniewicz A, Bartkiewicz S, Orlikowska H, Dradrach K (2016) Scientific Reports 6

  29. Chraïbi H, Delville JP (2012) Phys Fluids 24(3):032102. 1994-present

    Article  Google Scholar 

  30. Levich V, Krylov V (1969) Ann Rev Fluid Mech 1(1):293

    Article  Google Scholar 

  31. Shin S, Jacobi I, Stone HA (2016). EPL Europhys Lett 113(2):24002

    Article  Google Scholar 

  32. Montgomery DC (2012) Design and analysis of experiments, 8th edn

  33. Shirley Dowdy DC, Stanley W (2004) Statistics for research, 3rd edn

Download references

Acknowledgements

This work was supported by the Programa Nacional de Innovación para la Competitividad y Productividad (FINCyT), Ministerio de la Producción, Perú, with grant #394-PNICP-PIBA-2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emir Vela.

Additional information

E. Muñoz and J. Quispe have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñoz, E., Quispe, J., Lambert, P. et al. Optimizing the speed of single infrared-laser-induced thermocapillary flows micromanipulation by using design of experiments. J Micro-Bio Robot 12, 65–72 (2017). https://doi.org/10.1007/s12213-017-0097-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12213-017-0097-3

Keywords

Navigation