Skip to main content
Log in

Controlling multiple microrobots: recent progress and future challenges

  • Research Paper
  • Published:
Journal of Micro-Bio Robotics Aims and scope Submit manuscript

Abstract

Robots the size of several microns have numerous application in medicine, biology, and manufacturing. However, simultaneous control of multiple robots at this scale is difficult since the robot itself is too small to carry power, sensors, communication, and control on-board. In this paper, we have summarized different approaches, ranging from specialized robot design and fabrication to specialized ways of actuating robots, with the aim of independent control of a team/swarm of microrobots. We have also discussed the challenges for each approach. In the light of the challenges, we have proposed some directions where the future researchers can focus in order to solve the problem of independent control of a team of microrobots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Martel S (Dec 2013) Magnetic navigation control of microagents in the vascular network: Challenges and strategies for endovascular magnetic navigation control of microscale drug delivery carriers. IEEE Control Syst 33(6):119–134

  2. Banerjee AG, Chowdhury S, Losert W, Gupta SK (2011) Survey on indirect optical manipulation of cells, nucleic acids, and motor proteins. J Biomed Opt 16(5):051302

    Article  Google Scholar 

  3. Cappelleri D, Efthymiou D, Goswami A, Vitoroulis N, Zavlanos M (2014) Towards mobile microrobot swarms for additive micromanufacturing. Int J Adv Robot Syst 11(150). doi:10.5772/58985

  4. Diller E, Sitti M, et al. (2013) Micro-scale mobile robotics. Foundations and Trends in Robotics 2 (3):143–259

    Article  Google Scholar 

  5. Abbott J, Nagy Z, Beyeler F, Nelson B (2007) Robotics in the small. IEEE Robot Autom Mag 14:92–103

    Article  Google Scholar 

  6. Banerjee A, Chowdhury S, Gupta SK (2014) Optical tweezers: autonomous robots for the manipulation of biological cells. IEEE Robot Autom Mag 21(3):81–88

    Article  Google Scholar 

  7. Thakur A, Chowdhury S, Ṡvec P, Wang C, Losert W, Gupta SK (2014) Indirect pushing based automated micromanipulation of biological cells using optical tweezers. Int J Robot Res 0278364914523690

  8. Kummer MP, Abbott JJ, Kratochvil BE, Borer R, Sengul A, Nelson BJ (2010) Octomag: an electromagnetic system for 5-dof wireless micromanipulation. IEEE Trans Robot 26(6):1006–1017

    Article  Google Scholar 

  9. Steager EB, Sakar MS, Magee C, Kennedy M, Cowley A, Kumar V (2013) Automated biomanipulation of single cells using magnetic microrobots. Int J Robot Res 32(3):346–359

    Article  Google Scholar 

  10. Floyd S, Pawashe C, Sitti M (2008) An untethered magnetically actuated micro-robot capable of motion on arbitrary surfaces. In: IEEE International Conference on Robotics and Automation, 2008. ICRA 2008. IEEE, pp 419–424

  11. Jing W, Xi C, Lyttle S, Zhenbo F, Shi Y, Cappelleri DJ (2011) A magnetic thin film microrobot with two operating modes. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp 96–101

  12. Jing W, Pagano N, Cappelleri DJ (2013) A tumbling magnetic microrobot with flexible operating modes. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp 5514–5519

  13. Jing W, Pagano N, Cappelleri DJ (2013) A novel micro-scale magnetic tumbling microrobot. J Micro-Bio Robot 8(1):1–12

    Article  Google Scholar 

  14. Jing W, Pagano N, Cappelleri DJ (2012) A micro-scale magnetic tumbling microrobot. In: ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 187–196

  15. Seyfried J, Szymanski M, Bender N, Estana R, Thiel M, Wörn H (2005) The i-swarm project: Intelligent small world autonomous robots for micro-manipulation. In: Swarm Robotics. Springer, pp 70–83

  16. Estana R, Woern H (2007) The micron robot project. In: Autonome Mobile Systeme 2007. Springer, pp 334–340

  17. Rubenstein M, Cornejo A, Nagpal R (2014) Programmable self-assembly in a thousand-robot swarm. Science 345(6198):795–799

    Article  Google Scholar 

  18. Pelrine R, Wong-Foy A, McCoy B, Holeman D, Mahoney R, Myers G, Herson J, Low T (2012) Diamagnetically levitated robots: an approach to massively parallel robotic systems with unusual motion properties. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp 739–744

  19. Sitti M (2007) Microscale and nanoscale robotics systems [grand challenges of robotics]. IEEE Robot Autom Mag 14(1):53–60

    Article  Google Scholar 

  20. Sitti M (2009) Miniature devices: voyage of the microrobots. Nature 458(7242):1121–1122

    Article  Google Scholar 

  21. Nelson BJ, Kaliakatsos IK, Abbott JJ (2010) Microrobots for minimally invasive medicine. Annu Rev Biomed Eng 12:55–85

    Article  Google Scholar 

  22. Martel S (2013) Microrobotics in the vascular network: present status and next challenges. J Micro-Bio Robot 8(1):41–52

    Article  Google Scholar 

  23. Abbott JJ, Lagomarsino MC, Zhang L, Dong L, Nelson BJ (2009) How should microrobots swim? Int J Robot Res

  24. Martel S (2015) Magnetic nanoparticles in medical nanorobotics. J Nanoparticle Res 17(2):1–15

    Article  MathSciNet  Google Scholar 

  25. Martel S (2014) Magnetic therapeutic delivery using navigable agents. Ther Deliv 5(2):189–204

    Article  MathSciNet  Google Scholar 

  26. Ashkin A, Dziedzic JM, Yamane T (Dec. 1987) Optical trapping and manipulation of single cells using infrared-laser beams. Nature 330(6150):769–771

  27. Banerjee AG, Chowdhury S, Losert W, Gupta SK (2012) Real-time path planning for coordinated transport of multiple particles using optical tweezers. IEEE Trans Autom Sci Eng 9(4):669–678

    Article  Google Scholar 

  28. Chowdhury S, Svec P, Wang C, Seale K, Wikswo JP, Losert W, Gupta SK (2013) Automated cell transport in optical tweezers assisted microfluidic chamber. IEEE Trans Autom Sci Eng 10(4):980–989

    Article  Google Scholar 

  29. Hu S, Sun D (2011) Automated transportation of biological cells with a robot-tweezer manipulation system. Int J Robot Res 30(14):1681–1694

    Article  Google Scholar 

  30. Ju T, Liu S, Yang J, Sun D (2011) Apply RRT-based path planning to robotic manipulation of biological cells with optical tweezer. In: Proceedings of the International Conference Mechatronics Automation, Beijing, China, pp 221–226

  31. Wu Y, Sun D, Huang W, Xi N (2013) Dynamics analysis and motion planning for automated cell transportation with optical tweezers. IEEE/ASME Trans Mechatron 18(2):706–713

    Article  Google Scholar 

  32. Chowdhury S, Thakur A, Wang C, Svec P, Losert W, Gupta SK (2014) Automated manipulation of biological cells using gripper formations controlled by optical tweezers. IEEE Trans Autom Sci Eng 11(2):338–347

    Article  Google Scholar 

  33. Cheah CC, Ta QM, Haghighi R (2015) Robotic manipulation of a biological cell using multiple optical traps. In: IEEE International Conference on Robotics and Automation (ICRA), 2015, pp 803–808

  34. Arai F, Maruyama H, Sakami T, Ichikawa A, Fukuda T (2003) Pinpoint injection of microtools for minimally invasive micromanipulation of microbe by laser trap. IEEE/ASME Trans Mechatron 8(1):3–9

    Article  Google Scholar 

  35. Arai F, Endo T, Yamauchi R, Fukuda T (2006) 3d 6dof manipulation of microbead by laser tweezers. J Rob Mechatron 18(2):153

    Google Scholar 

  36. Jannasch A, Demirörs AF, van Oostrum PDJ, van Blaaderen A, Schäffer E (2012) Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres. Nat Photonics 6(7):469–473

    Article  Google Scholar 

  37. Zhong M-C, Wei X-B, Zhou J-H, Wang Z-Q, Li Y-M (2013) Trapping red blood cells in living animals using optical tweezers. Nat Commun 4:1768

    Article  Google Scholar 

  38. Hu W, Ishii KS, Ohta AT (2011) Micro-assembly using optically controlled bubble microrobots. Appl Phys Lett 99(9):094103

    Article  Google Scholar 

  39. Hu W, Ishii KS, Ohta AT (2012) Micro-assembly using optically controlled bubble microrobots in saline solution. In: IEEE International Conference on Robotics and Automation (ICRA), 2012, pp 733–738

  40. Chowdhury S, Jing W, Jaron P, Cappelleri D (2015) Path planning and control for autonomous navigation of single and multiple magnetic mobile microrobots. In: Proceedings of the ASME 2015 International Design Engineering Technical Conferences & Computers and Informatio in Engineering Conference, Boston, Massachusetts, USA, August 2–5

  41. Khalil ISM, van den Brink F, Sukas OS, Misra S (2013) Microassembly using a cluster of paramagnetic microparticles. In: IEEE International Conference on Robotics and Automation (ICRA), 2013. IEEE, pp 5527–5532

  42. Khalil ISM, Magdanz V, Sanchez S, Schmidt OG, Abelmann L, Misra S (2013) Magnetic control of potential microrobotic drug delivery systems: nanoparticles, magnetotactic bacteria and self-propelled microjets. In: Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE. IEEE, pp 5299–5302

  43. Martel S, Felfoul O, Mathieu J-B, Chanu A, Tamaz S, Mohammadi M, Mankiewicz M, Tabatabaei N (2009) Mri-based medical nanorobotic platform for the control of magnetic nanoparticles and flagellated bacteria for target interventions in human capillaries. Int J Robot Res 28(9):1169–1182

    Article  Google Scholar 

  44. Mathieu J-B, Martel S (2010) Steering of aggregating magnetic microparticles using propulsion gradients coils in an mri scanner. Magn Reson Med 63(5):1336–1345

    Article  Google Scholar 

  45. Martel S, Mathieu J-B, Felfoul O, Chanu A, Aboussouan E, Tamaz S, Pouponneau P, Yahia LH, Beaudoin G, Soulez G, Mankiewicz M (2007) Automatic navigation of an untethered device in the artery of a living animal using a conventional clinical magnetic resonance imaging system. Appl Phys Lett 90(11)

  46. Vartholomeos P, Fruchard M, Ferreira A, Mavroidis C (2011) Mri-guided nanorobotic systems for therapeutic and diagnostic applications. Annu Rev Biomed Eng 13:157–184

    Article  Google Scholar 

  47. Pawashe C, Floyd S, Sitti M (2009) Modeling and experimental characterization of an untethered magnetic micro-robot. Int J Robot Res 28(8):1077–1094

    Article  Google Scholar 

  48. Pawashe C, Floyd S, Sitti M (2009) Multiple magnetic microrobot control using electrostatic anchoring. Appl Phys Lett 94(16):164108–164108

    Article  Google Scholar 

  49. Diller E, Floyd S, Pawashe C, Sitti M (2012) Control of multiple heterogeneous magnetic microrobots in two dimensions on nonspecialized surfaces. IEEE Trans Robot 28(1):172–182

    Article  Google Scholar 

  50. Frutiger DR, Vollmers K, Kratochvil BE, Nelson BJ (2010) Small, fast, and under control: wireless resonant magnetic micro-agents. Int J Robot Res 29(5):613–636

    Article  Google Scholar 

  51. DeVon D, Bretl T (2009) Control of many robots moving in the same direction with different speeds: a decoupling approach. In: American Control Conference, 2009. ACC’09. IEEE, pp 1794–1799

  52. Kei Cheang U, Lee K, Julius AA, Kim MJ (2014) Multiple-robot drug delivery strategy through coordinated teams of microswimmers. Appl Phys Lett 105(8):083705

    Article  Google Scholar 

  53. Wong D, Wang J, Steager E, Kumar V (2015) Control of multiple magnetic micro robots. In: Proceedings of the ASME 2015 International Design Engineering Technical COnferences & Computers and Information in Engineering Conference, Boston, Massachusetts, USA, August 2–5

  54. Lee CS, Lee H, Westervelt RM (2001) Microelectromagnets for the control of magnetic nanoparticles. Appl Phys Lett 79(20):3308–3310

    Article  Google Scholar 

  55. Lee H, Liu Y, Ham De, Westervelt RM (2007) Integrated cell manipulation systemcmos/microfluidic hybrid. Lab Chip 7(3):331–337

    Article  Google Scholar 

  56. Rida A, Fernandez V, Gijs MAM (2003) Long-range transport of magnetic microbeads using simple planar coils placed in a uniform magnetostatic field. Appl Phys Lett 83(12):2396–2398

    Article  Google Scholar 

  57. Lehmann U, Hadjidj S, Parashar VK, Rida A, Gijs MAM (2005) Two dimensional magnetic manipulation of microdroplets on a chip. In: The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS’05, vol 1. IEEE, pp 77–80

  58. Kim D, Liu A, Diller E, Sitti M (2012) Chemotactic steering of bacteria propelled microbeads. Biomed Microdevices 14(6):1009–1017

    Article  Google Scholar 

  59. Steager EB, Sakar MS, Kim DH, Kumar V, Pappas GJ, Kim MJ (2011) Electrokinetic and optical control of bacterial microrobots. J Micromech Microeng 21(3):035001

    Article  Google Scholar 

  60. Behkam B, Sitti M (2007) Bacterial flagella-based propulsion and on/off motion control of microscale objects. Appl Phys Lett 90(2)

  61. Martel S, Mohammadi M, Felfoul O, Zhao L, Pouponneau P (2009) Flagellated magnetotactic bacteria as controlled mri-trackable propulsion and steering systems for medical nanorobots operating in the human microvasculature. Int J Robot Res 28(4):571–582

    Article  Google Scholar 

  62. Kim PSS, Becker A, Ou Y, Julius AA, Kim MJ (2015) Imparting magnetic dipole heterogeneity to internalized iron oxide nanoparticles for microorganism swarm control. J Nanoparticle Res 17(3):1–15

    Google Scholar 

  63. De Lanauze D, Felfoul O, Turcot J-P, Mohammadi M, Martel S (2013) Three-dimensional remote aggregation and steering of magnetotactic bacteria microrobots for drug delivery applications. Int J Robot Res:0278364913500543

  64. Becker A, Ou Y, Kim P, Kim MJ, Julius A (2013) Feedback control of many magnetized: Tetrahymena pyriformis cells by exploiting phase inhomogeneity. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2013. IEEE, pp 3317–3323

  65. Becker A, Demaine ED, Fekete SP, Habibi G, McLurkin J (2014) Reconfiguring massive particle swarms with limited, global control. In: Algorithms for Sensor Systems. Springer, pp 51–66

  66. Donald BR, Levey CG, Paprotny I, Rus D (2010) Simultaneous control of multiple mems microrobots. In: Algorithmic Foundation of Robotics VIII. Springer, pp 69–84

  67. Yamazaki A, Sendoh M, Ishiyama K, Arai KI, Kato R, Nakano M, Fukunaga H (2004) Wireless micro swimming machine with magnetic thin film. J Magn Magn Mater 272:E1741—E1742

  68. Ghosh A, Fischer P (2009) Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett 9(6):2243–2245

    Article  Google Scholar 

  69. Zhang L, Abbott JJ, Dong L, Kratochvil BE, Bell D, Nelson BJ (2009) Artificial bacterial flagella: Fabrication and magnetic control. Appl Phys Lett 94(6):064107

    Article  Google Scholar 

  70. SelmanáSakar M, et al. (2014) Cooperative manipulation and transport of microobjects using multiple helical microcarriers. RSC Adv 4(51):26771–26776

    Article  Google Scholar 

  71. Li J, Li T, Xu T, Kiristi M, Liu W, Wu Z, Wang J (2015) Magneto-acoustic hybrid nanomotor. Nano Lett

  72. Vitoroulis Jr. NE, Cappelleri DJ (2013) Microcoil design and analysis for actuation of microstructures and devices. Portland, Oregon, USA, Augus 4–7

  73. Ohta AT, Chiou P-Y, Phan HL, Sherwood SW, Yang JM, Lau ANK, Hsu H-Y, Jamshidi A, Wu MC (2007) Optically controlled cell discrimination and trapping using optoelectronic tweezers. IEEE J Sel Top Quantum Electron 13(2):235–243

    Article  Google Scholar 

  74. Jing W, Cappelleri DJ (2014) Towards functional mobile magnetic microrobots. In: Small-Scale Robotics. From Nano-to-Millimeter-Sized Robotic Systems and Applications. Springer, pp 81–100

  75. Jing W, Cappelleri DJ (2014) Incorporating in-situ force sensing capabilities in a magnetic microrobot. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), pp 4704–4709

  76. Jing W, Cappelleri D (2014) A magnetic microrobot with in situ force sensing capabilities. Robotics 3 (2):106–119

    Article  Google Scholar 

  77. Ren W, Beard RW, Atkins EM (2005) A survey of consensus problems in multi-agent coordination. In: American Control Conference, 2005. Proceedings of the 2005, vol 3, pp 1859–1864

Download references

Acknowledgments

The authors would like to acknowledge the support of NSF grants IIS-1358446 and IIS-1433967 for this work. Opinions expressed are those of the authors and do not necessarily reflect opinions of the sponsors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Cappelleri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, S., Jing, W. & Cappelleri, D.J. Controlling multiple microrobots: recent progress and future challenges. J Micro-Bio Robot 10, 1–11 (2015). https://doi.org/10.1007/s12213-015-0083-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12213-015-0083-6

Keywords

Navigation