Skip to main content

Handling of micro objects using phase transition of thermoresponsive polymer

Abstract

In this paper, we achieve a handling of micro objects using a phase transition of thermoresponsive polymer solution. The phase transition was controlled by a microheater which is embedded in a tip of probe device. In general, probe devices are one of the important devices for micromanipulation, especially for cell manipulation such as handling of egg cells, stiffness measurement, and patch clamping. However, conventional probe devices have some limitations: difficulties in releasing the handled objects by the effect of surface force and damages to the handled cells by the direct contact. As one solution of those problems, we use phase transition of thermoresponsive polymer solution to control handling and releasing of micro objects. The microheater embedded in the probe tip can generate the thermoresponsive gel. Micro objects can be handled by the generated gel and released by returning the gel to sol again. The manipulation of micro objects and assembly of three dimensional structures were demonstrated by the probe. The thermoresponsive gel generated μN force to fix handled objects in the gel. The multi-scale handling from a yeast cell (less than 10 μm in diameter) to a liposome (more than 100 μm in diameter) was also demonstrated. The handling of micro objects in pure water (not containing thermoresponsive polymer) was finally conducted using a theta tube. Those results validate that the probe can achieve the soft handling by the thermoresponsive gel and the precise positioning by reducing the effect of surface force.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Inoue K, Tanikawa T, Arai T (2008) Micro-manipulation system with a two-fingered micro-hand and its potential application in bioscience. J Biotech 133:219–224. doi:10.1016/j.jbiotec.2007.08.027

    Article  Google Scholar 

  2. Wejinya UC, Shen Y, Xi N, Lai KWC, Zhang J (2008) An efficient approach of handling and deposition of micro and nano entities using sensorized microfluidic end-effector system. Sensors Actuators A 147:6–16. doi:10.1016/j.sna.2008.03.021

    Article  Google Scholar 

  3. Chen SU, Chao KH, Chang CY, Hsieh FJ, Ho HN, Yang YS (2004) Technical aspects of the piezo, laser-assisted, and conventional methods for nuclear transfer of mouse oocytes and their efficiency and efficacy: piezo minimizes damage of the ooplasmic membrane at injection. J Exp Zool 301A:344–351. doi:10.1002:/jez.a.20037

    Article  Google Scholar 

  4. Kimura Y, Yanagimachi R (1995) Intracytoplasmic sperm injection in the mouse. Biol Reprod 52:709–720

    Article  Google Scholar 

  5. Sakaki K, Dechev N, Burke RD, Park EJ (2009) Development of an autonomous biological cell manipulator with single-cell electroporation and visual servoing capabilities. IEEE Trans Biomed Eng 56:2064–2074. doi:10.1109/TBME.2009.2021577

    Article  Google Scholar 

  6. Ahmad MR, Nakajima M, Kojima S, Homma M, Fukuda T (2008) The effects of cell sizes, environmental conditions, and growth phases on the strength of individual W303 yeast cells inside ESEM. IEEE Trans Nanobiosci 7:185–193. doi:10.1109/TNB.2008.2002281

    Article  Google Scholar 

  7. Ounkomol C, Xie H, Dayton PA, Heinrich V (2009) Versatile horizontal force probe for mechanical tests on pipette-held cells, particles, and membrane capsules. Biophys J 96:1218–1231. doi:10.1016/j.bpj.2008.10.047

    Article  Google Scholar 

  8. Haque A, Zuberi M, Diaz-Rivera RE, Porterfield DM (2009) Electrical characterization of a single cell electroporation biochip with the 2-D scanning vibrating electrode technology. Biomed Microdevices 11:1239–1250. doi:10.1007/s10544-009-9343-3

    Google Scholar 

  9. Maruo S, Ikuta K, Korogi H (2003) Submicron manipulation tools driven by light in a liquid. Appl Phys Lett 82:133–135. doi:10.1063/1.1533853

    Article  Google Scholar 

  10. Arai F, Yoshikawa K, Sakami T, Fukuda T (2004) Synchronized laser micromanipulation of multiple targets along each trajectory by single laser. Appl Phys Lett 85:4301–4303. doi:10.1063/1.1815061

    Article  Google Scholar 

  11. Chiou PY, Ohta AT, Wu MC (2005) Massively parallel manipulation of single cells and microparticles using optical images. Nature 436:370–372. doi:10.1038/nature03831

    Article  Google Scholar 

  12. Ohta AT, Chiou PY, Han TH, Liao JC, Bhardwaj U, McCabe ERB, Yu F, Sun R, Wu MC (2007) Dynamic cell and microparticle control via optoelectronic tweezers. J Microelectromech Syst 16:491–499. doi:10.1109/JMEMS.2007.896717

    Article  Google Scholar 

  13. Uvet H, Hasegawa A, Ohara K, Takubo T, Mae Y, Arai (2009) Vision-based automated single-cell loading and supply system. T IEEE Trans Nanobiosci 8:332–340. doi:10.1109/TNB.2009.2035280

    Article  Google Scholar 

  14. Sun Y, Yin XF (2006) Novel multi-depth microfluidic chip for single cell analysis. J Chromatogr A 1117:228–233. doi:10.1016/j.chroma.2006.03.088

    Article  Google Scholar 

  15. Thielecke H, Impidjati ZH, Fuhr GR (2005) Gentle cell handling with an ultra-slow instrument: creep-manipulation of cells. Microsyst Technol 11:1230–1241. doi:10.1007/s00542-005-0584-7

    Article  Google Scholar 

  16. Thielecke H, Impidjati, Fuhr GR (2006) Biopsy on living cells by ultra slow instrument movement. J Phys Condens Matter 18:S627–S637. doi:10.1088/0953-8984/18/18/S09

  17. Colinjivadi KS, Lee JB, Draper R (2008) Viable cell handling with high aspect ratio polymer chopstick gripper mounted on a nano precision manipulator. Microsyst Technol 14:1627–1633. doi:10.1007/s00542-008-0580-9

    Google Scholar 

  18. Walle BL, Gauthier M, Chaillet N (2008) Principle of a submerged freeze gripper for microassembly. IEEE Trans Robot 24:897–902. doi:10.1109/TRO.2008.924944

    Article  Google Scholar 

  19. Chen BK, Zhang Y, Sun Y (2009) Active release of microobjects using a MEMS microgripper to overcome adhesion forces. J Microelectromech Systems 18:652–659. doi:10.1109/JMEMS.2009.2020393

    Google Scholar 

  20. Park J, Moon W (2005) The systematic design and fabrication of a three-chopstick microgripper. Int J Adv Manuf Technol 26:251–261. doi:10.1007/s00170-002-1493-x

    Google Scholar 

  21. Beyeler F, Neild A, Oberti S, Bell DJ, Sun Y, Dual J, Nelson BJ (2007) Monolithically fabricated microgripper with integrated force sensor for manipulating microobjects and biological cells aligned in an ultrasonic field. J Microelectromech Systems 16:7–15. doi:10.1109/JMEMS.2006.885853

    Google Scholar 

  22. Chung SK, Cho SK (2009) 3-D manipulation of millimeter- and micro-sized objects using an acoustically excited oscillating bubble. Microfluid Nanofluid 6:261–265. doi:10.1007/s10404-008-0324-2

  23. Li Y, Wang F, Wang H (2010) Cell death along single microfluidic channel after freeze-thaw treatments. Biomicrofluidics 4:014111. doi:10.1063/1.3324869

    Article  Google Scholar 

  24. Ichikawa A, Arai F, Yoshikawa K, Uchida T, Fukuda T (2005) In situ formation of a gel microbead for indirect laser micromanipulation of microorganisms. Appl Phys Lett 87:1911108. doi:10.1063/1.2126800

    Google Scholar 

  25. Arai F, Ichikawa A, Fukuda T, Katsuragi T (2003) Isolation and extraction of target microbes using thermal sol–gel transformation. Analyst 128:547–551. doi:10.1039/b212919a

    Article  Google Scholar 

  26. Yamanishi Y, Teramoto J, Magariyama Y, Ishihama A, Fukuda T, Arai F (2009) On-chip cell immobilization and monitoring system using thermosensitive gel controlled by suspended polymeric microbridge. IEEE Trans Nanobiosci 8:312–317. doi:10.1109/TNB.2009.2035273

    Article  Google Scholar 

  27. Ichikawa M, Yoshikawa K (2001) Optical transport of a single cell-sized liposome. Appl Phys Lett 79:4598–4600. doi:10.1063/1.1430026

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Ministry of Education, Culture, Sports, Science and Technology of Japan (Grans-in-Aid for BioAssembler (23106006) and JSPS Fellows (22 8644)), and the Global COE program (COE for Education and Research of Micro-Nano Mechatronics)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaru Takeuchi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Takeuchi, M., Nakajima, M., Kojima, M. et al. Handling of micro objects using phase transition of thermoresponsive polymer. J Micro-Bio Robot 8, 53–64 (2013). https://doi.org/10.1007/s12213-013-0060-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12213-013-0060-x

Keywords

  • Micromanipulation
  • Probe device
  • Thermoresponsive gel
  • Microheater
  • Phase transition