Skip to main content
Log in

An overview of multiple DoF magnetic actuated micro-robots

  • Research Paper
  • Published:
Journal of Micro-Nano Mechatronics Aims and scope Submit manuscript

Abstract

This paper reviews the state of the art of untethered, wirelessly actuated and controlled micro-robots. Research for such tools is being increasingly pursued to provide solutions for medical, biological and industrial applications. Indeed, due to their small size they offer both high velocity, and accessibility to tiny and clustered environments. These systems could be used for in vitro tasks on lab-on-chips in order to push and/or sort biological cells, or for in vivo tasks like minimally invasive surgery and could also be used in the micro-assembly of micro-components. However, there are many constraints to actuating, manufacturing and controlling micro-robots, such as the impracticability of on-board sensors and actuators, common hysteresis phenomena and nonlinear behavior in the environment, and the high susceptibility to slight variations in the atmosphere like tiny dust or humidity. In this work, the major challenges that must be addressed are reviewed and some of the best performing multiple DoF micro-robots sized from tens to hundreds μm are presented. The different magnetic micro-robot platforms are presented and compared. The actuation method as well as the control strategies are analyzed. The reviewed magnetic micro-robots highlight the ability of wireless actuation and show that high velocities can be reached. However, major issues on actuation and control must be overcome in order to perform complex micro-manipulation tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. Helmholtz coil pair: two identical circular magnetic coils placed symmetrically one on each side along a common axis, and separated by a distance equal to the radius of the coil. Each coil carries an equal electrical current flowing in the same direction.

  2. Maxwell coil pair: two identical circular magnetic coils placed symmetrically one on each side along a common axis, and separated by 1.73 times their radius. Each coil carries an equal electrical current flowing in the opposite direction.

  3. Respectively P \(_{\rm des}= \left[ x_{\rm des} \ y_{\rm des} \ z_{\rm des} \right]^{\text{T}}\) in 3D.

  4. ε x , ε y , ε z , ε θ , are respectively the error along x, y, z direction and the orientation.

  5. Proportional Integrator

References

  1. Nelson BJ, Kaliakatsos IK, Abbott JJ (2010) Microrobots for minimally invasive medicine. Annu Rev Biomed Eng 12:55–85

    Article  Google Scholar 

  2. Donald BR, Levey CG, Mcgray CD, Paprotny I, Rus D (2006) An untethered, electrostatic, globally controllable mems micro-robot. J Microelectromech Syst 15(1):1–15

    Article  Google Scholar 

  3. Kharboutly K, Gauthier M, Chaillet N (2010) Modeling the trajectory of a micro particle in a dielectrophoresis device. In: IEEE international conference on robotics and automation (ICRA’10)

  4. Jing W, Chen X, Lyttle S, Fu Z, Shi Y, Cappelleri DJ (2011) A magnetic thin film microrobot with two operating modes. In: IEEE international conference on robotics and automation (ICRA’11), pp 96–101

  5. Kósa G, Shoham M, Zaaroor M (2007) Propulsion method for swimming microrobots. IEEE Trans Robot 13(1):137–150

    Article  Google Scholar 

  6. Liew L-A, Bright VM, Dunn ML, Daily JW, Raj R (2002) Development of SiCN ceramic thermal actuators. In: IEEE international conference on micro electro mechanical systems

  7. Cahill DG, Ford WK, Goodson KE, Mahan GD, Majumdar HJ, Maris A, Merlin R, Phillpot SR (2003) Nanoscale thermal transport. J Appl Phys 93(2):793–818

    Article  Google Scholar 

  8. Bellouard Y (2009) Micro-robotics: methods and applications. CRC Press, Boca Raton

    Google Scholar 

  9. Martel S, Tremblay CC, Ngakeng S, Langlois G (2006) Controlled manipulation and actuation of micro-objects with magnetotactic bacteria. Appl Phys Lett 89(23):233904–233907

    Article  Google Scholar 

  10. Martel S, Mohammadi M, Felfoul O, Lu Z, Pouponneau P (2009) Flagellated magnetotactic bacteria as controlled MRI-trackable propulsion and steering systems for medical nanorobots operating in the human microvasculature. Int J Rob Res 28(4):571–582

    Article  Google Scholar 

  11. Onda K, Arai F (2012) Parallel teleoperation of holographic optical tweezers using multi-touch user interface. In: IEEE international conference on robotics and automation (ICRA’12)

  12. Chowdhury S, Svec P, Chenlu W, Losert W, Gupta SK (2012) Gripper synthesis for indirect manipulation of cells using Holographic Optical Tweezers. In: IEEE international conference on robotics and automation (ICRA’12)

  13. Abbott JJ, Peyer KE, Lagomarsino MC, Zhang L, Dong LX, Kaliakatsos IK, Nelson BJ (2009) How should microrobots swim? Int J Rob Res 28(11–12):1434–1447

    Article  Google Scholar 

  14. Mahoneya AW, Sarrazinb JC, Bambergb E, Abbottb JJ (2011) Velocity control with gravity compensation for magnetic helical microswimmers. Adv Robot 25(8):1007–1028

    Article  Google Scholar 

  15. Ghosh A, Fischer P (2009) Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett 9(6):2243–2245

    Article  Google Scholar 

  16. Tottori S, Zhang L, Qiu F, Krawczyk K, Franco-Obregón A, Nelson BJ (2012) Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport. Adv Mater 24(6):811–816

    Article  Google Scholar 

  17. Yamazaki A, Sendoh M, Ishiyama K, Arai KI, Kato R, Nakano M, Fukunaga H (2004) Wireless micro swimming machine wiht magnetic thin film. J Magn Magn Mater 272–276:1751–1742

    Google Scholar 

  18. Zhang L, Abbott JJ, Dong LX, Kratochvil BE, Bell DJ, Nelson BJ (2009) Artificial bacterial flagella: fabrication and magnetic control. Appl Phys Lett 94(6):064107-3

    Google Scholar 

  19. Hagiwara M, Kawahara T, Feng L, Yamanishi Y, Arai F (2011) On-chip enucleation of oocyte by magnetically driven microtools with ultrasonic vibration. In: IEEE international conference on robotics and automation (ICRA’11)

  20. Pawashe C, Floyd S, Sitti M (2009) Modeling and experimental characterization of an untethered magnetic micro-robot. Int J Rob Res 28:1077–1094

    Article  Google Scholar 

  21. Kummer M, Abbott JJ, Kratochvil BE, Borer R, Sengul A, Nelson BJ (2010) Octomag: an electromagnetic system for 5-DOF wireless micromanipulation. IEEE Trans Robot 26(6):1006–1017

    Article  Google Scholar 

  22. Keuning JD, de Vries J, Abelmann L, Misra S (2011) Image-based magnetic control of paramagnetic microparticles in water. In: IEEE international conference on intelligent robots and systems (IROS’11), pp 421–426

  23. Folio D, Dahmen C, Wortmann T, Arif Zeeshan M, Shou K, Pane S, Nelson BJ, Ferreira A, Fatikow S (2011) MRI magnetic signature imaging, tracking and navigation for targeted micro/nano-capsule therapeutics. In: IEEE international conference on intelligent robots and systems (IROS’11)

  24. Belharet K, Folio D, Ferreira A (2011) Three-dimensional controlled motion of a microrobot using magnetic gradients. Adv Robot 25(12):1169–1183

    Google Scholar 

  25. Martel S, Felfoul O, Mathieu J-B, Chanu A, Tamaz S, Mohammadi M, Mankiewicz M, Tabatabaei N (2009) MRI-based medical nanorobotic platform for the control of magnetic nanoparticles and flagellated bacteria for target interventions in human capillaries. Int J Rob Res 28(9):1169–1182

    Article  Google Scholar 

  26. Nagy Z, Ergeneman O, Abbott JJ, Hutter M, Hirt AM, Nelson BJ (2008) Modeling assembled-MEMS microrobots for wireless magnetic control. In: IEEE international conference on robotics and automation (ICRA’08)

  27. Palagi S, Pensabene V, Beccai L, Mazzolai B, Menciassi A, Dario P (2011) Design and development of a soft magnetically-propelled swimming microrobot. In: IEEE international conference on robotics and automation (ICRA’11)

  28. Floyd S, Pawashe C, Sitti M (2009) Dynamic modeling of stick slip motion in an untethered magnetic micro-robot. In: Robotics: science and systems. The MIT Press

  29. Jiang G-L, Guu Y-H, Lu C-N, Li P-K, Shen H-M, Lee L-S, Yeh JA, Hou MT-K (2010) Development of rolling magnetic microrobots. J Micromech Microeng 20(8):085042

    Article  Google Scholar 

  30. Vollmers K, Frutiger DR, Kratochvil BE, Nelson BJ (2008) Wireless resonant magnetic microactuator for untethered mobile microrobots. Appl Phys Lett 92(14):1444103-3

    Article  Google Scholar 

  31. Frutiger DR, Vollmers K, Kratochvil B, Nelson BJ (2010) Small, fast, and under control: wireless resonant magnetic micro-agents. Int J Rob Res 54:169–178

    Google Scholar 

  32. Tung H-W, Frutiger DR, Pane S, Nelson BJ (2012) Polymer-based wireless resonant magnetic microrobots. In: IEEE international conference on robotics and automation (ICRA’12)

  33. Ramanujan RV, Yeow YY (2005) Synthesis and characterisation of polymer-coated metallic magnetic materials. Mater Sci Eng 25(1):39–41

    Article  Google Scholar 

  34. Pouponneau P, Yahia L’H, Merhi Y, Epure LM, Martel S (2006) Biocompatibility of candidate materials for the realization of medical microdevices. In: IEEE international conference of the Engineering in Medicine and Biology Society

  35. Ivan AI, Hwang G, Agnus J, Rakotondrabe M, Chaillet N, Régnier S (2011) First experiment on MagPieR: a planar wireless magnetic and piezoelectric microrobot. In: IEEE international conference on robotics and automation (ICRA’11), pp 102–108

  36. Jeong S, Choi H, Ko SY, Park J-o, Park S (2012) Remote controlled micro-robots using electromagnetic actuation (EMA) systems. In: IEEE international conference on biomedical robotics and biomechatronics

  37. Abbott JJ, Nagy Z, Beyeler F, Nelson BJ (2007) Robotics in the small, part I: microrobotics. IEEE Robot Autom Mag 14(2):92–103

    Article  Google Scholar 

  38. Hagiwara M, Kawahara T, Iijima T, Yamanishi Y, Arai F (2012) High speed microrobot actuation in a micro-fluidic chip by levitated structure with riblet surface. In: IEEE international conference on robotics and automation (ICRA’12)

  39. Calderon G, Draye J-P, Pavisic D, Teran R, Libert G (1996) Nonlinear Dynamic System Identification with dynamic recurrent neural networks. In: International workshop on neural networks for identification, control, robotics, and signal/image processing (NICROSP ’96)

  40. Li M-B, Er MJ (2006) Nonlinear system identification using extreme learning machine. In: International conference on control, automation, robotics and vision (ICARCV’06)

  41. Lichtsteiner P, Posch C, Delbruck T (2008) A 128*128 120 dB 15 s latency asynchronous temporal contrast vision sensor. IEEE J Solid-State Circuits 43(2):566–576

    Article  Google Scholar 

  42. Diller ED, Floyd S, Pawashe C, Sitti M (2012) Control of multiple heterogeneous magnetic microrobots in two dimensions on nonspecialized surfaces. IEEE Trans Robot 28(1):172–182

    Article  Google Scholar 

  43. Floyd S, Pawashe C, Sitti M (2008) An untethered magnetically actuated micro-robot capable of motion on arbitrary surfaces. In: IEEE international conference on robotics and automation (ICRA’08)

  44. http://www.nist.gov/el/isd/robotals.cfm. Accessed 19 July 2012

  45. Isard M, Blake A (1998) Condensation—conditional density propagation for visual tracking. Int J Comput Vis 29(1):5–28

    Article  Google Scholar 

  46. LaValle SM (2006) Planning algorithms. Cambridge University Press, Cambridge. Available at http://planning.cs.uiuc.edu/

    Book  Google Scholar 

  47. Pawashe C, Floyd S, Diller E, Sitti M (2012) Two-dimensional autonomous microparticle manipulation strategies for magnetic microrobots in fluidic environments. IEEE Trans Robot 28(2):467–477

    Article  Google Scholar 

  48. Floyd S, Pawashe C, Sitti M (2009) Microparticle manipulation using multiple untethered magnetic micro-robots on an electrostatic surface. In: IEEE international conference intelligent robots and systems (IROS’09), pp 528–533

  49. Diller E, Pawashe C, Floyd S, Sitti M (2011) Assembly and disassembly of magnetic mobile micro-robots towards deterministic 2-D reconfigurable micro-systems. Int J Rob Res 30:1667–1680

    Article  Google Scholar 

  50. Yeşin KB, Vollmers K, Nelson BJ (2006) Modeling and control of untethered biomicrorobots in a fluidic environment using electromagnetic fields. Int J Rob Res 25(56):1667–1680

    Google Scholar 

  51. Khalil ISM, Keuning JD, Abelmann L, Misra S (2012) Wireless magnetic-based control of paramagnetic microparticles. In: 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp 460–466, 24–27 June 2012. doi:10.1109/BioRob.2012.6290856

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soukeyna Bouchebout.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouchebout, S., Bolopion, A., Abrahamians, JO. et al. An overview of multiple DoF magnetic actuated micro-robots. J. Micro-Nano Mech. 7, 97–113 (2012). https://doi.org/10.1007/s12213-012-0048-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12213-012-0048-y

Keywords

Navigation