Highly-sensitive fluorescence detection and imaging with microfabricated total internal reflection (TIR)-based devices

Abstract

This paper presents the development and application of several total internal reflection (TIR)-based devices for highly-sensitive and high-resolution fluorescence imaging. Using micro electro mechanical systems (MEMS) fabrication technology, miniaturized single-wavelength and dual-wavelength TIR-based devices have been designed and fabricated. A low-cost and simple fabrication process utilizing TMAH wet etching, deep reactive ion etching (DRIE) and polymer casting has enabled us to integrate several optical components into one single poly(dimethylsiloxane) (PDMS) chip, thus alignment and assembly are eliminated. The slide-format and monolithic chip can be used with both upright and inverted fluorescent microscope with interchangeable sample delivery platforms, i.e. glass slides, flow-cells, microchannels etc…In different configurations, the devices were applied in measurement of the average velocity field of fluorescent beads in pressure-driven flow in a microchannel and then in detecting of single DNA molecules. Another ongoing effort is focused on using the device for cell imaging which will be briefly discussed. These applications are the first step toward integration the TIR-based chips into a detection functionality of a μ-TAS. Our proposed devices are smaller, simpler and less expensive comparing to current objective-type and prism-type total internal reflection fluorescent microscopy (TIRFM) systems. At this moment, our devices could provide quick and low-cost evanescent excitations with one or two wavelengths in upright or inverted fluorescent microscopes using normal objective lenses. In the future, they might be integrated as a detection module in a μ-TAS where highly-sensitivity and high-resolution fluorescence imaging capability is necessary. Finally, some discussion on the limitation and future developments for our devices will be also provided.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. 1.

    Axelrod D, Burghardt TP, Thompson NL (1984) Total internal reflection fluorescence (in biophysics). Annu Rev Biophys Bio 13:247–268

    Article  Google Scholar 

  2. 2.

    Sako Y and Yanagida T T (2003) “Single-molecule visualization in cell biology” Nat Rev Mol Cell Bio September supplement, SS1-SS5

  3. 3.

    Le NCH, Yokokawa R, Dao DV, Nguyen TD, Wells JC, Sugiyama S (2009) Versatile microfluidic Total Internal Reflection (TIR)-based devices: application to microbeads velocity measurement and single molecule detection with upright and inverted microscope. Lab Chip 9:244–250

    Article  Google Scholar 

  4. 4.

    Zettner CM, Yoda M (2003) Particle velocity field measurements in a near-wall flow using evanescent wave illumination. Exp Fluids 34:115–121

    Google Scholar 

  5. 5.

    Jin S, Huang P, Park J, Yoo JY, Breuer KS (2004) Near-surface velocimetry using evanescent wave illumination. Exp Fluids 37:825–833

    Article  Google Scholar 

  6. 6.

    Sadr R, Yoda M, Zheng Z, Conlisk AT (2004) An experimental study of electro-osmotic flow in rectangular microchannels. J Fluid Mech 506:357–367

    MATH  Article  Google Scholar 

  7. 7.

    Sadr R, Yoda M, Gnanaprakasam P and Conlisk A T (2006) “Velocity Measurement inside the diffuse electric double layer in electro-osmotic flow” Appl. Phys. Lett. 89: 044103 1-3

    Google Scholar 

  8. 8.

    Gai H, Li Y, Silber-Li Z, Ma Y, Lin B (2005) Simultaneous measurements of the flow velocities in a microchannel by wide/evanescent field illuminations with particle/single molecules. Lab Chip 5:443–449

    Article  Google Scholar 

  9. 9.

    Yildiz A, Tomishige M, Vale RD, Selvin PR (2004) Kinesin walks hand-over-hand. Science 303:676–678

    Article  Google Scholar 

  10. 10.

    Yildiz A, Park H, Safer D, Yang Z, Chen LQ, Selvin PR, Sweeney HL (2004) Myosin VI steps via a hand-over-hand mechanism with its lever arm undergoing fluctuations when attached to actin. J Biol Chem 279:37223–37226

    Article  Google Scholar 

  11. 11.

    Seisenberger G, Ried MU, Endreß T, Büning H, Hallek M, Bräuchle C (2001) Real-time single molecule imaging of the infection pathway of an adeno-associated virus. Science 294:1929–1932

    Article  Google Scholar 

  12. 12.

    Harada Y, Funatsu T, Murakami K, Nonoyama Y, Ishihama A, Yanagida T (1999) Single-molecule imaging of RNA polymerase-DNA interactions in real time. Biophys J 76:709–715

    Article  Google Scholar 

  13. 13.

    Kang SH, Shortreed MR, Yeung ES (2001) Real-time dynamics of single-DNA molecules undergoing adsorption and desorption at liquid-solid interfaces. Anal Chem 73:1091–1099

    Article  Google Scholar 

  14. 14.

    Xu XHN, Yeung ES (1998) Long-range electrostatic trapping of single-protein molecules at a liquid-solid interface. Science 281:1650–1653

    Article  Google Scholar 

  15. 15.

    Kang SH, Yeung ES (2002) Dynamics of single-protein molecules at a liquid/solid interface: implications in capillary electrophoresis and chromatography. Anal Chem 74:6334–6339

    Article  Google Scholar 

  16. 16.

    Tengholm A, Teruel MN and Meyer T (2003) “Single cell imaging of PI3K activity and glucose transporter insertion into the plasma membrane by dual color evanescent wave microscopy” Sci STKE 2003, pl4

  17. 17.

    Schmoranzer J, Simon SM (2003) Role of microtubules in fusion of post-Golgi vesicles to the plasma membrane. Mol Biol Cell 14:1558–1569

    Article  Google Scholar 

  18. 18.

    Koyama-Honda I, Ritchie K, Fujiwara T, Iino R, Murakoshi H, Kasai RS, Kusumi A (2005) Fluorescence imaging for monitoring the colocalization of two single molecules in living cells. Biophys J 88:2126–2136

    Article  Google Scholar 

  19. 19.

    Leutenegger M, Blom H, Widengren J, Eggeling C, Gosch M, Leitgeb RA and Lasser T (2006) “Dual-color total internal reflection fluorescence cross-correlation spectroscopy” J Biomed Opt 11: 040502 1–3

    Google Scholar 

  20. 20.

    Kang SH, Kim Y-J, Yeung ES (2007) “Detection of single-molecule DNA hybridization by using dual-color total internal reflection fluorescence microscopy”. Anal Bioanal Chem 387:2663–2671

    Article  Google Scholar 

  21. 21.

    Lee S, Chung BH, Kang SH (2008) Dual-color prism-type TIRFM system for direct detection of single-biomolecules on nanoarray biochips. Curr Appl Phys 8:700–705

    Article  Google Scholar 

  22. 22.

    Reyes DR, Iossifidis D, Auroux P-A, Manz A (2002) Micro total analysis systems. 1. Introduction, theory, and technology. Anal Chem 74:2623–2636

    Article  Google Scholar 

  23. 23.

    Auroux P-A, Iossifidis D, Reyes DR, Manz A (2002) Micro total analysis systems. 2. Analytical standard operations and applications. Anal Chem 74:2637–2652

    Article  Google Scholar 

  24. 24.

    Lee SJ, Lee SY (2004) Micro total analysis system (μ-TAS) in biotechnology. Appl Microbiol Biotechnol 64:289–299

    Article  Google Scholar 

  25. 25.

    Dittrich PS, Tachikawa K, Manz A (2006) Micro total analysis systems. Latest advancements and trends. Anal Chem 78:3887–3908

    Article  Google Scholar 

  26. 26.

    West J, Becker M, Tombrink S, Manz A (2008) Micro total analysis systems: latest achievements. Anal Chem 80:4403–4419

    Article  Google Scholar 

  27. 27.

    Pennathur S, Fygenson DK (2008) Improving fluorescence detection in lab on chip devices. Lab Chip 8:649–652

    Article  Google Scholar 

  28. 28.

    Dittrich PS, Manz A (2005) Single-molecule fluorescence detection in microfluidic channels—the Holy Grail in μ-TAS? Anal Bioanal Chem 382:1771–1782

    Article  Google Scholar 

  29. 29.

    Yang H, Luo G, Karnchanaphanurach P, Louie T-M, Rech I, Cova S, Xun L, Xie XS (2003) Protein conformational dynamics probed by single-molecule electron transfer. Science 302:262–266

    Article  Google Scholar 

  30. 30.

    Hu CD, Kerppola TK (2003) Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat Biotechnol 21:539–545

    Article  Google Scholar 

  31. 31.

    Perkins TT, Smith DE, Chu S (1997) Single polymer dynamics in an elongational flow. Science 276(5321):2016–2021

    Article  Google Scholar 

  32. 32.

    O’Neill P, Rothemund PWK, Kumar A, Fygenson DK (2006) Sturdier DNA nanotubes via ligation. Nano Lett 6(7):1379–1383

    Article  Google Scholar 

  33. 33.

    Riveline D, Wiggins CH, Goldstein RE, Ott A (1997) “Elastohydrodynamic study of actin filaments using fluorescence microscopy”. Phys Rev E 56(2):R1330–R1333

    Article  Google Scholar 

  34. 34.

    Lehr HP, Brandenburg A, Sulz G (2003) Modeling and experimental verification of the performance of TIRF-sensing systems for oligonucleotide microarrays based on bulk and integrated optical planar waveguides. Sensors Actuators B 92:303–314

    Article  Google Scholar 

  35. 35.

    Chronis N, Lee LP (2004) Total internal reflection-based biochip utilizing a polymer-filled cavity with a micromirror sidewall. Lab Chip 4:125–130

    Article  Google Scholar 

  36. 36.

    Huang SH, Tseng FG (2005) Development of a monolithic total internal reflection-based biochip utilizing a microprism array for fluorescence sensing. J Micromech Microeng 15:2235–2242

    Article  Google Scholar 

  37. 37.

    Kuno A, Uchiyama N, Koseki-Kuno S, Ebe Y, Takashima S, Yamada M, Hirabayashi J (2005) Evanescent-field fluorescence-assisted lectin microarray: A new strategy for glycan profiling. Nat Methods 2:851–856

    Article  Google Scholar 

  38. 38.

    Grandin HM, Stadler B, Textor M, Voros J (2006) Waveguide excitation fluorescence microscopy: a new tool for sensing and imaging the biointerface. Biosens Bioelectron 21:1476–1482

    Article  Google Scholar 

  39. 39.

    Le NCH, Dao DV, Yokokawa R, Wells J, Sugiyama S (2007) “Design, simulation and fabrication of a total internal reflection (TIR)-based chip for highly sensitive fluorescent imaging”. J Micromech Microeng 17:1139–1146

    Article  Google Scholar 

  40. 40.

    Le NCH, Dao DV, Yokokawa R, Wells JC, Sugiyama S (2009) Fabrication of smooth, through-wafer silicon molds for PDMS total internal reflection-based devices. Microsyst Technol 15:1845–1853

    Article  Google Scholar 

  41. 41.

    Le NCH, Dao DV, Yokokawa R, Wells JC, Sugiyama S (2009) A monolithic dual-color total-internal-reflection-based chip for highly sensitive and high-resolution dual-fluorescence imaging. IEEE/ASME J Microelectromech Syst 18:1371–1381

    Article  Google Scholar 

  42. 42.

    Hecht E (2002) “Optics” 4th Ed. Addison Wesley, San Francisco

  43. 43.

    Axelrod D, Burghardt TP, Thompson NL (1984) Total internal reflection fluorescence (in biophysics). Annu Rev Biophys Bioeng 13:247–268

    Article  Google Scholar 

  44. 44.

    Lotsch HKV (1970) Beam displacement at total reflection: the Goos Hänchen shift, II. Optik 32:189–204

    Google Scholar 

  45. 45.

    Taitt CR, Anderson GP, Ligler FS (2005) Evanescent wave fluorescence biosensors. Biosens Bioelectron 20:2470–2487

    Article  Google Scholar 

  46. 46.

    Franssila S, Kiihamäki J, Karttunen J (2000) Etching through silicon wafer in inductively coupled plasma. Microsyst Technol 6:141–144

    Article  Google Scholar 

  47. 47.

    Pike WT, Karl WJ, Kumar S, Vijendran S, Semple T (2004) Analysis of sidewall quality in through-wafer deep reactive-ion etching. Microelectron Eng 73–74:340–345

    Article  Google Scholar 

  48. 48.

    Lee CH, Jiang K, Davies GJ (2007) Sidewall roughness characterization and comparison between silicon and SU-8 microcomponents. Mater Charact 58:603–609

    Article  Google Scholar 

  49. 49.

    Kao DB, McVittie JP, Nix WD, Saraswat KC (1987) Two-dimensional thermal oxidation of silicon—I. Experiments. IEEE Trans Electron Devices 34:1008–1017

    Article  Google Scholar 

  50. 50.

    Nilsson D, Balslev S, Kristensen A (2005) A microfluidic dye laser fabricated by nanoimprint lithography in a highly transparent and chemically resistant cyclo-olefin copolymer (COC). J Micromech Microeng 15:296–300

    Article  Google Scholar 

  51. 51.

    Bourouina T, Masuzawa T, Fujita H (2004) “The MEMSNAS process: microloading effect for micromachining 3-D structures of nearly all shapes”. J Microelectromech Syst 12(2):190–199

    Article  Google Scholar 

  52. 52.

    Burchfield JG, Lopez JA, Mele K, Vallotton P, Hughes WE (2010) Exocytotic vesicle behaviour assessed by total internal reflection fluorescence microscopy. Traffic 11:429–439

    Article  Google Scholar 

  53. 53.

    Shaw RM, Fay AJ, Puthenveedu MA, von Zastrow M, Jan Y-N, Jan LY (2007) Microtubule plus-end-tracking proteins target gap junctions directly from the cell interior to adherens junctions. Cell 128:547–560

    Article  Google Scholar 

  54. 54.

    Kitazawa Y, Yokokawa R, Terao K, Okonogi A, Dao DV, Sugiyama S, Kanno I and Kotera H (2011) “Real-time monitoring of Ca2+ concentration in pancreatic beta cells by a microfluidic device integrated with Total Internal Reflection (TIR)-based chip” Proceedings 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS), Cancun, Mexico, Jan 23–27, 956–959

Download references

Acknowledgment

N. C. H. Le gratefully acknowledges the Ministry of Education, Culture, Sports, Science and Technology, Government of Japan (MEXT) of Japan for his doctoral scholarship. This study was partially supported by the Kyoto NanoTech Cluster and Research for Promoting Technological Seeds grant from Japan Science and Technology Agency (JST). The authors thank Prof. M. Kasahara with Department of Bioscience and Biotechnology, Ritsumeikan University for helping the preparation of DNA fragments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nam Cao Hoai Le.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Le, N.C.H., Dao, D.V., Yokokawa, R. et al. Highly-sensitive fluorescence detection and imaging with microfabricated total internal reflection (TIR)-based devices. J. Micro-Nano Mech. 7, 45–59 (2012). https://doi.org/10.1007/s12213-012-0043-3

Download citation

Keywords

  • Total internal reflection (TIR)-based chip
  • Fluorescent imaging
  • Micro electro mechanical systems (MEMS)
  • Single molecule detection
  • Nano-particle image velocimetry (nano-PIV)
  • Cell imaging
  • Micro-total analysis systems (micro-TAS)