Distributed control of multiscale microscopic chemical sensor networks

Research Paper


Micromachines and nanoscale devices can act together for high-resolution monitoring and action on multiple size scales within physical materials and biological organisms. Such multiscale systems require robust distributed controls responsive to heterogeneous and poorly characterized microenvironments. To develop such controls, this paper extends the partially observable Markov decision process formalism to machines operating asynchronously at multiple scales and with delays. We show how an approximation to this formalism readily provides aggregate performance measures needed for designing distributed controls. This approach identifies the aggregate behavior as arising from differential-delay equations approximating the system’s dynamics. We illustrate this approach to distributed controls for chemical sensor networks consisting of micro- and nanoscale devices in the context of high-resolution biomedical diagnostics and treatment through localized drug delivery.


Microscopic sensors Distributed control Rate equations Asynchronous actions Delayed information Differential-delay equation 


  1. 1.
    Bryzek J, Petersen K, McCulley W (1994) Micromachines on the march. IEEE Spectrum 31:20–31CrossRefGoogle Scholar
  2. 2.
    Craighead HG (2000) Nanoelectromechanical systems. Science 290:1532–1535CrossRefGoogle Scholar
  3. 3.
    Hung ES, Zhao F (1999) Diagnostic information processing for sensor-rich distributed systems. In: Proc. of the 2nd intl. conf. on information fusion (Fusion’99)Google Scholar
  4. 4.
    Hill C, Amodeo A, Joseph JV, Patel HRH (2008) Nano- and microrobotics: how far is the reality? Expert Rev Anticancer Ther 8:1891–1897CrossRefGoogle Scholar
  5. 5.
    Gilman JJ (1996) Mechanochemistry. Science 274:65CrossRefGoogle Scholar
  6. 6.
    Wang SY, Williams RS (eds) (2005) Nanoelectronics, vol 80. Springer, New York (special issue of Appl Phys A)Google Scholar
  7. 7.
    Sheehan PE, Whitman LJ (2005) Detection limits for nanoscale biosensors. Nano Lett 5(4):803–807CrossRefGoogle Scholar
  8. 8.
    Jager EWH, Inganas O, Lundstrom I (2000) Microrobots for micrometer-size objects in aqueous media: potential tools for single-cell manipulation. Science 288:2335–2338CrossRefGoogle Scholar
  9. 9.
    Freitas RA Jr (1999) Nanomedicine: basic capabilities, vol I. Landes Bioscience, Georgetown. www.nanomedicine.com/NMI.htm
  10. 10.
    Hogg T, Sretavan DW (2005) Controlling tiny multi-scale robots for nerve repair. In: Proc. of the 20th natl. conf. on artificial intelligence (AAAI2005). AAAI, Menlo Park, pp 1286–1291Google Scholar
  11. 11.
    How JP, Hall SR (1992) Local control design methodologies for a hierarchic control architecture. J Guid Control Dyn 15(3):654–663MATHCrossRefGoogle Scholar
  12. 12.
    Hogg T, Huberman BA (1998) Controlling smart matter. Smart Mater Struc 7:R1–R14, Arxiv.org preprint cond-mat/9611024CrossRefGoogle Scholar
  13. 13.
    de la Rosa JL et al (2009) Shout and act: a system for heterogeneous robot coordination, and its implications for the design of rescue robot teams. Univ. of GironaGoogle Scholar
  14. 14.
    West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126CrossRefGoogle Scholar
  15. 15.
    Mahfuz MU, Ahmed KM (2005) A review of micro-nano-scale wireless sensor networks for environmental protection: prospects and challenges. Sci Technol Adv Mater 6:302–306CrossRefGoogle Scholar
  16. 16.
    Harta JK, Martinez K (2006) Environmental sensor networks: a revolution in the earth system science? Earth-Sci Rev 78:177–191CrossRefGoogle Scholar
  17. 17.
    Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press, OxfordMATHGoogle Scholar
  18. 18.
    Shakkottai S, Srikant R, Shroff NB (2005) Unreliable sensor grids: coverage, connectivity and diameter. Ad Hoc Networks 3(6):702–716CrossRefGoogle Scholar
  19. 19.
    Liu J, Sycara KP (1995) Exploiting problem structure for distributed constraint optimization. In: Lesser V (ed) Proc. of the 1st international conference on multiagent systems (ICMAS95). AAAI, Menlo Park, pp 246–253Google Scholar
  20. 20.
    Pearce JP, Tambe M, Maheswaran R (2008) Solving multiagent networks using distributed constraint optimization. AI Mag 29(3):47–62Google Scholar
  21. 21.
    Cassandra AR, Kaelbling LP, Littman ML (1994) Acting optimally in partially observable stochastic domains. In: Proc. of the 12th natl. conf. on artificial intelligence (AAAI94). AAAI, Menlo Park, pp 1023–1028Google Scholar
  22. 22.
    Goldman CV, Zilberstein S (2003) Optimizing information exchange in cooperative multi-agent systems. In: Proc. of the 2nd intl. conf. on autonomous agents and multiagent systems, pp 137–144Google Scholar
  23. 23.
    Seuken S, Zilberstein S (2008) Formal models and algorithms for decentralized decision making under uncertainty. Auton Agents Multi-Agent Syst 17:190–250CrossRefGoogle Scholar
  24. 24.
    de Souza PS, Talukdar S (1993) Asynchronous organizations for multi-algorithm problems. In: Proc. of ACM symposium on applied computing (SAC93), pp 286–294Google Scholar
  25. 25.
    Huberman BA, Glance NS (1993) Evolutionary games and computer simulations. Proc Natl Acad Sci U S A 90:7716–7718MATHCrossRefGoogle Scholar
  26. 26.
    Galstyan A, Hogg T, Lerman K (2005) Modeling and mathematical analysis of swarms of microscopic robots. In: Arabshahi P, Martinoli A (eds) Proc. of the IEEE swarm intelligence symposium (SIS2005), pp 201–208Google Scholar
  27. 27.
    Lerman K, Galstyan A, Martinoli A, Ijspeert AJ (2001) A macroscopic analytical model of collaboration in distributed robotic systems. Artif Life 7:375–393CrossRefGoogle Scholar
  28. 28.
    Hauskrecht M (2000) Value-function approximations for partially observable Markov decision processes. J Artif Intell Res 13:33–94MATHMathSciNetGoogle Scholar
  29. 29.
    Opper M, Saad D (eds) (2001) Advanced mean field methods: theory and practice. MIT, CambridgeMATHGoogle Scholar
  30. 30.
    Goodstein DL (1975) States of matter. Prentice-Hall, Englewood CliffsGoogle Scholar
  31. 31.
    Simon HA (1996) The sciences of the artificial, 3rd edn. MIT, CambridgeGoogle Scholar
  32. 32.
    Berg HC (1993) Random walks in biology, 2nd edn. Princeton University Press, PrincetonGoogle Scholar
  33. 33.
    Glance N, Hogg T, Huberman BA (1991) Computational ecosystems in a changing environment. Int J Mod Phys C 2(3):735–753CrossRefGoogle Scholar
  34. 34.
    Berg HC, Purcell EM (1977) Physics of chemoreception. Biophys J 20:193–219CrossRefGoogle Scholar
  35. 35.
    Hogg T (2007) Coordinating microscopic robots in viscous fluids. Auton Agents Multi-Agent Syst 14(3):271–305CrossRefMathSciNetGoogle Scholar
  36. 36.
    Arbuckle D, Requicha AAG (2004) Active self-assembly. In: Proc. of the IEEE intl. conf. on robotics and automation, pp 896–901Google Scholar
  37. 37.
    Thompson DW (1992) On growth and form. Cambridge University Press, CambridgeGoogle Scholar
  38. 38.
    Painter PR, Eden P, Bengtsson HU (2006) Pulsatile blood flow, shear force, energy dissipation and Murray’s Law. Theor Biol Med Model 3:31CrossRefGoogle Scholar
  39. 39.
    Janeway CA et al (2001) Immunobiology: the immune system in health and disease, 5th edn. Garland, New YorkGoogle Scholar
  40. 40.
    Pruitt KM, Kamau DN (1993) Mathematical models of bacterial growth, inhibition and death under combined stress conditions. J Ind Microbiol 12:221–231CrossRefGoogle Scholar
  41. 41.
    Freitas RA Jr (2006) Pharmacytes: an ideal vehicle for targeted drug delivery. J Nanosci Nanotechnol 6:2769–2775CrossRefGoogle Scholar
  42. 42.
    Eaton JW et al (1982) Haptoglobin: a natural bacteriostat. Science 215:691–693CrossRefGoogle Scholar
  43. 43.
    Hyslop PA et al (1995) Hydrogen peroxide as a potent bacteriostatic antibiotic: implications for host defense. Free Radic Biol Med 19:31–37CrossRefGoogle Scholar
  44. 44.
    Ellner SP, Guckenheimer J (2006) Dynamic models in biology. Princeton University Press, PrincetonMATHGoogle Scholar
  45. 45.
    Bellman R, Cooke KL (1963) Differential-difference equations. Academic, New YorkMATHGoogle Scholar
  46. 46.
    Corless RM, et al (1996) On the Lambert W function. Adv Comput Math 5:329–359MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Natterer F (2001) The mathematics of computerized tomography. Society for Industrial and Applied Math (SIAM), PhiladelphiaMATHGoogle Scholar
  48. 48.
    Hogg T, Huberman BA (2004) Dynamics of large autonomous computational systems. In: Tumer K, Wolpert D (eds) Collectives and the design of complex systems. Springer, New York, pp 295–315Google Scholar
  49. 49.
    Kitano H (ed) (1998) Robocup-97: robot soccer world cup I. In: Lecture notes in computer science, vol 1395. Springer, BerlinGoogle Scholar
  50. 50.
    Hogg T, Huberman BA, Williams CP (eds) (1996) Frontiers in problem solving: phase transitions and complexity, vol 81. Elsevier, Amsterdam (special issue of Artif Intell)Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Hewlett-Packard LaboratoriesPalo AltoUSA

Personalised recommendations