Analysis of stability and transparency for nanoscale force feedback in bilateral coupling

  • Aude Bolopion
  • Barthélemy Cagneau
  • D. Sinan Haliyo
  • Stéphane Régnier
Research Paper

Abstract

This paper deals with the problem of finding a compromise between stability and transparency for bilateral haptic control in nanorobotics. While manipulating objects with an AFM, real time visual feedback is not available. Force feedback is used to compensate for this lack of visual information. The structure of the control scheme and the value of the controller gains are critical issues for stability, transparency, and ease of manipulation. Two common control schemes are analyzed for submicron scale interactions. Based on stability and transparency criteria, the influence of each of the controllers’ gains is derived. The applications for which the bilateral couplings are best suited, as well as their intrinsic limitations are discussed. The theoretical analysis is validated with an experiment composed of several phases with high dynamic phenomena.

Keywords

Telenanorobotics Force feedback Haptic coupling Bilateral control Nanomanipulation 

References

  1. 1.
    Sitti M (2007) Microscale and nanoscale robotics systems [grand challenges of robotics]. IEEE Robot Autom Mag 14(1):53–60CrossRefGoogle Scholar
  2. 2.
    Ferreira A, Mavroidis C (2006) Virtual reality and haptics for nanorobotics. IEEE Robot Autom Mag 13(3):78–92CrossRefGoogle Scholar
  3. 3.
    Hollis R, Salcudean S, Abraham D (1990) Toward a tele-nanorobotic manipulation system with atomic scale force feedback and motion resolution. In: IEEE workshop on micro electro mechanical systems, Napa Valley, 12–14 February 1990, pp 115–119Google Scholar
  4. 4.
    Goldfarb, M (1998) Dimensional analysis and selective distorsion in scaled bilateral telemanipulation. In: Proceedings of the IEEE international conference on robotics and automation. IEEE, Piscataway, pp 1609–1614Google Scholar
  5. 5.
    Niemeyer G, Slotine JJ (1991) Stable adaptive teleoperation. IEEE J Oceanic Eng 16(1):152–162CrossRefGoogle Scholar
  6. 6.
    Anderson R, Spong M (1989) Bilateral control of teleoperators with time delay. IEEE Trans Automat Contr 34(5):494–501CrossRefMathSciNetGoogle Scholar
  7. 7.
    Ryu JH, Kim YS, Hannaford B (2004) Sampled- and continuous-time passivity and stability of virtual environment. IEEE Trans Robot Autom 20(4):772–776Google Scholar
  8. 8.
    Daunay B, Micaelli A, Régnier S (2007) 6 DOF haptic feedback for molecular docking using wave variables. In: Proceedings of the IEEE international conference on robotics and automation. IEEE, Piscataway, pp 840–845CrossRefGoogle Scholar
  9. 9.
    Kim SG, Sitti M (2006) Task-based and stable telenanomanipulation in a nanoscale virtual environment. IEEE Trans Autom Sci Eng 3(3):240–247CrossRefGoogle Scholar
  10. 10.
    Boukhnifer M, Ferreira A (2007) H-infinity loop shaping bilateral controller for a two-fingered tele-micromanipulation system. IEEE Trans Control Syst Technol 15(5):891–905CrossRefGoogle Scholar
  11. 11.
    Boukhnifer M, Ferreira A (2006) Wave-based passive control for transparent micro-teleoperation system. Robot Auton Syst 54(7):601–615CrossRefGoogle Scholar
  12. 12.
    Kaneko K, Tokashiki H, Tanie K, Komoriya K (1997) Impedance shaping based on force feedback bilateral control in macro-micro teleoperation system. In: Proceedings of the IEEE international conference on robotics and automation. IEEE, Piscataway, pp 710–717Google Scholar
  13. 13.
    Onal CD, Sitti M (2009) A scaled bilateral control system for experimental one-dimensional teleoperated nanomanipulation. Int J Rob Res 28(4):484–497CrossRefGoogle Scholar
  14. 14.
    Venture G, Haliyo DS, Régnier S, Micaelli A (2005) Force-feedback micromanipulation with unconditionally stable coupling. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems. IEEE, Piscataway, pp 1923–1928Google Scholar
  15. 15.
    Tian X, Liu L, Jiao N, Wang Y, Dong Z, Xi N (2004) 3D nano forces sensing for an AFM based nanomanipulator. In: Proceedings of the IEEE international conference on information acquisition. IEEE, Piscataway, pp 208–212CrossRefGoogle Scholar
  16. 16.
    Xie H, Vitard J, Haliyo DS, Régnier S, Boukallel M (2008) Calibration of lateral force measurements in atomic force microscopy. Rev Sci Instrum 79:033708CrossRefGoogle Scholar
  17. 17.
    Onal CD, Pawashe C, Sitti M (2007) A scaled bilateral control system for experimental 1-D teleoperated nanomanipulation applications. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems. IEEE, Piscataway, pp 483–488Google Scholar
  18. 18.
    Ammi M, Ferreira A (2007) Robotic assisted micromanipulation system using virtual fixtures and metaphors. In: Proceedings of the IEEE international conference on robotics and automation. IEEE, Piscataway, pp 454–460CrossRefGoogle Scholar
  19. 19.
    Ando N, Ohta M, Hashimoto H (2000) Micro teleoperation with haptic interface. In: 26th annual conference of the IEEE industrial electronics society, vol 1. IEEE, Piscataway, pp 13–18Google Scholar
  20. 20.
    Goethals P, Gersem GD, Sette M, Reynaerts D, Brussel HV (2007) Accurate haptic teleoperation on soft tissues through slave friction compensation by impedance reflection. In: Proceedings of the second joint EuroHaptics conference and symposium on haptic interfaces for virtual environment and teleoperator systems, Tsukuba, 22–24 March 2007Google Scholar
  21. 21.
    Maugis D (2000) Contact, adhesion and rupture of elastic solids, vol 130, chap 4. Springer, New York pp 203–344Google Scholar
  22. 22.
    Lawrence D (1993) Stability and transparency in bilateral teleoperation. IEEE Trans Robot Autom Autom 9(5):624–637CrossRefMathSciNetGoogle Scholar
  23. 23.
    Hokayem PF, Spong MW (2006) Bilateral teleoperation: an historical survey. Automatica 42(12):2035–2057MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Adams RJ, Hannaford B (1999) Stable haptic interaction with virtual environments. IEEE Trans Robot Autom Autom 15(3):465–474CrossRefGoogle Scholar
  25. 25.
    Hogan N (1989) Controlling impedance at the man/machine interface. In: Proceedings of the IEEE international conference on robotics and automation. IEEE, Piscataway, pp 1626–1631Google Scholar
  26. 26.
    Llewellyn F (1952) Some fundamental properties of transmission systems. Proc IRE 40(3):271–283CrossRefGoogle Scholar
  27. 27.
    Gil JJ, Avello A, Rubio A, Flórez J (2004) Stability analysis of a 1 DOF haptic interface using the Routh-Hurwitz criterion. IEEE Trans Control Syst Technol 12(4):583–588CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Aude Bolopion
    • 1
  • Barthélemy Cagneau
    • 1
  • D. Sinan Haliyo
    • 1
  • Stéphane Régnier
    • 1
  1. 1.Institut des Systèmes Intelligents et de RobotiqueUniversité Pierre et Marie Curie, Paris 06Paris CedexFrance

Personalised recommendations