Skip to main content
Log in

Rediscovery of cold pressed cardamom (Elettaria cardamomum L.) oil: a good source of fat-soluble bioactives with functional and health-enhancing traits

  • Research Paper
  • Published:
Rendiconti Lincei. Scienze Fisiche e Naturali Aims and scope Submit manuscript

Abstract

Cardamom (Elettaria cardamomum) fruits or capsules are rich in bioactive phytochemicals with beneficial health impacts. Very few studies reported the chemistry and functionality of Elettaria cardamomum lipids, fixed oil, and cold pressed cardamom oil (CPCO). This work characterized CPCO for its lipid classes, fatty acids, phytosterols, tocols, total phenolics, antiradical potential (toward galvinoxyl and DPPH· radicals), antioxidative effects, and antimicrobial behavior (against foodborne bacteria and dermatophytic fungi). Neutral lipids were detected at the highest amount (ca. 96.6%), followed by glycolipids (ca. 2%) and phospholipids (ca. 1.3%). Oleic (C18:1, 43.7%), palmitic (C16:0, 21.6%), and linoleic (C18:2, 17.6%) were the major fatty acids in CPCO. The levels of monounsaturated fatty acids (MUFA), saturated fatty acids (SFA), and polyunsaturated fatty acids (PUFA) were 47%, 32%, and 21%, respectively. CPCO contained large amounts of unsaponifiables (16.4 g/kg). The total content of phytosterols was 222 mg/100 g oil, wherein β-sitosterol was the main compound, followed by sitostanol, campesterol, stigmasterol, Δ5-avenasterol, and citrostadienol. The total content of tocols was 2.38 mg/100 g of oil, and the contents (mg/100 g oil) of α-, β-, γ-, and δ-tocopherols in CPCO were 1.25, 0.08, 0.58, and 0.28, respectively. Besides, CPCO contained high amounts of total phenolics (3.9 mg GAE/g oil). CPCO exhibited better antiradical traits than extra virgin olive oil. The induction time (IT) recorded for sunflower oil (SFO) and CPCO blend (9:1, v/v) was 405 min, while the IT for blend) 8:2, v/v) was 532 min. Besides, CPCO showed broad antimicrobial effects against foodborne pathogens (Salmonella enteritidis, Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli) and dermatophytic fungi (Trichophyton mentagrophytes and Trichophyton rubrum). It could be concluded that CPCO is a good source of lipid-soluble bioactives, making it a unique raw material for novel food, cosmetic, and pharmaceutical products.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

Abbreviations

CEO :

Cardamom essential oil

CER :

Cerebrosides

CC :

Column chromatography

CPCO :

Cold pressed cardamom oil

CPOs :

Cold pressed oils

CZD :

Clear zone diameter

DAG :

Diacylglycerols

DGD :

Digalactosyldiacylglycerol

DPPH :

2,2-Diphenyl-1-picrylhydrazyl

ESG :

Esterified steryl glucoside

EVOO :

Extra virgin olive oil

FAME :

Fatty acid methyl esters

FFA :

Free fatty acids

GC :

Gas chromatography

GL :

Glycolipids

HPLC :

High-performance liquid chromatography

IT :

Induction time

MAG :

Monoacylglycerols

MGD :

Monogalactosyldiacylglycerol

MLC :

Minimum lethal concentrations

NL :

Neutral lipids

PC :

Phosphatidylcholine

PE :

Phosphatidylethanolamine

PI :

Phosphatidylinositol

PL :

Phospholipids

PS :

Phosphatidylserine

P St :

Phytosterols

RSA :

Radical scavenging activity

SFO :

Sunflower oil

SG :

Steryl glucoside

SQD :

Sulphoquinovosyldiacylglycerol

STE :

Sterol esters

TAG :

Triacylglycerols

TLC :

Thin-layer chromatography

References

  • Abdeldaiem MHM, Ali HGM, Ramadan MF (2017) Impact of different essential oils on the characteristics of refrigerated carp (Cyprinus carpio) fish fingers. J Food Meas Charact 11(3):1412–1420. https://doi.org/10.1007/s11694-017-9520-7

    Article  Google Scholar 

  • Abdullah A., Asghar, A., Huang, Q., Mustfa, W., Javed, H. U., Zehm, S., & Chikindas, M. L. A (2020) Black cardamom essential oil prevents Escherichia coli O157:H7 and Salmonella Typhimurium JSG 1748 biofilm formation through inhibition of quorum sensing. J Food Sci Technol. https://doi.org/10.1007/s13197-020-04821-8

    Article  Google Scholar 

  • Alam A, Majumdar RS, Alam P (2019) Systematics evaluations of morphological traits, chemical composition, and antimicrobial properties of selected varieties of Elettaria cardamomum (L) Maton. Nat Prod Commun. https://doi.org/10.1177/1934578X19892688

    Article  Google Scholar 

  • Arens M, Schulte E, Weber K (1994) Fettsäuremethylester, Umesterung mit Trimethylsulfoniumhydroxid (Schnellverfahren). Fat Sci Technol 96:67–68

    Google Scholar 

  • Arpitha S, Srinivasan K, Sowbhagya HB (2019) Anti-inflammatory effect of resin fraction of cardamom (Elettaria cardamomum) in carrageenan-induced rat paw edema. PharmaNutrition 10:100165. https://doi.org/10.1016/j.phanu.2019.100165

    Article  Google Scholar 

  • Ashokkumar K, Pandian A, Murugan M, Dhanya MK, Sathyan T, Sivakumar P, Surya R, Warkentin TD (2019) Profiling bioactive flavonoids and carotenoids in select south Indian spices and nuts. Nat Prod Res. https://doi.org/10.1080/14786419.2018.1557179

    Article  Google Scholar 

  • Ashokkumar K, Murugan M, Dhanya MK, Surya R, Kamaraj D (2019b) Phytochemical variations among four distinct varieties of Indian cardamom Elettaria cardamomum (L.) Maton. Nat Prod Res. https://doi.org/10.1080/14786419.2018

    Article  Google Scholar 

  • Ashokkumar K, Murugan M, Dhanya MK, Warkentin TD (2020) Botany, traditional uses, phytochemistry and biological activities of cardamom [Elettaria cardamomum (L.) Maton]-A critical review. J Ethnopharmacol 246:112244. https://doi.org/10.1016/j.jep.2019.112244

    Article  CAS  Google Scholar 

  • Baby KC, Ranganathan TV (2016) Effect of enzyme pre-treatment on extraction yield and quality of cardamom (Elettaria cardamomum maton.) volatile oil. Ind Crops Prod 89:200–206. https://doi.org/10.1016/j.indcrop.2016.05.017

    Article  CAS  Google Scholar 

  • Bampidis V, Azimonti G, de Lourdes Bastos M, Christensen H, Kouba M, Kos Durjava M, López-Alonso M, López Puente S, Marcon F, Mayo B, Pechová A, Petkova M, Ramos F, Sanz Y, Villa R, Woutersen R, Brantom P, Chesson A, Kolar B, Dusemund B (2019) Safety and efficacy of an essential oil from Elettaria cardamomum (L) Maton when used as a sensory additive in feed for all animal species. EFSA J. https://doi.org/10.2903/j.efsa.2019.5721

    Article  Google Scholar 

  • Bhadauria S, Kumar P (2012) Broad spectrum antidermatophytic drug for the control of tinea infection in human beings. Mycoses 55:339–343

    Article  CAS  Google Scholar 

  • Burmester A, Shelest E, Glöckner G, Heddergott C, Schindler S, Staib P, Heidel A, Felder M, Petzold A, Szafranski K, Feuermann M, Pedruzzi I, Priebe S, Groth M, Winkler R, Li W, Kniemeyer O, Schroeckh V, Hertweck C, Hube B, White TC, Platzer M, Guthke R, Heitman J, Wöstemeyer J, Zipfel PF, Monod M, Brakhage AA (2011) Comparative and functional genomics provide insights into the pathogenicity of dermatophytic fungi. Genome Biol 12:R7

    Article  CAS  Google Scholar 

  • Chuang PH, Lee CW, Chou JY, Murugan M, Shieh BJ, Chen HM (2007) Anti-fungal activity of crude extracts and essential oil of Moringa oleifera Lam. Bioresour Technol 98:232–236

    Article  CAS  Google Scholar 

  • Dogruer I, Uyar HH, Uncu O, Ozen B (2021) Prediction of chemical parameters and authentication of various cold pressed oils with fluorescence and mid-infrared spectroscopic methods. Food Chem 345:128815

    Article  CAS  Google Scholar 

  • Elbanna K, Attalla K, Elbadry M, Abdeltawab A, Gamal-Eldin H, Ramadan MF (2014) Impact of floral sources and processing on the antimicrobial activities of different unifloral honeys. Asian Pac J Trop Dis 4:194–200

    Article  Google Scholar 

  • Elbanna K, Assiri AMA, Tadros M, Khider M, Assaeedi A, Mohdaly AAA, Ramadan MF (2018) Rosemary (Rosmarinus officinalis) oil: composition and functionality of the cold-pressed extract. J Food Meas Charact 12(3):1601–1609. https://doi.org/10.1007/s11694-018-9775-7

    Article  Google Scholar 

  • Garg G, Sharma S, Dua A, Mahajan R (2016) Antibacterial potential of polyphenol rich methanol extract of cardamom (Amomum subulatum). J Innov Biol 3:271–275

    Google Scholar 

  • Gilani AH, Jabeen Q, Khan A, Shah J (2008) Gut modulatory, blood pressure lowering, diuretic and sedative activities of cardamom. J Ethnopharmacol 115:463–472

    Article  CAS  Google Scholar 

  • Gopalakrishnan M, Narayanan CS, Grenz M (1990) Nonsaponifiable lipid constituents of Cardamom. J Agric Food Chem 38(12):2133–2136. https://doi.org/10.1021/jf00102a006

    Article  CAS  Google Scholar 

  • Gorusupudi A, Vallikannan B (2012) Glycolipids improve lutein bioavailability and accumulation in eyes in mice. Eur J Lipid Sci Technol 114:710–717

    Article  CAS  Google Scholar 

  • Govindarajan VS, Shanthi N, Raghuveer KG, Lewis YS, Stahl WH (1982) Cardamom-production, technology, chemistry, and quality. Crit Rev Food Sci Nutr 16:229–326

    Article  CAS  Google Scholar 

  • Hamzaa R, Osman N (2012) Using of coffee and cardamom mixture to ameliorate oxidative stress induced in γ-irradiated rats. Biochem Anal Biochem 1:113–119

    Google Scholar 

  • Hassanien MMM, Abdel-Razek AGM, Rudzińska M, Siger A, Ratusz K, Przybylski R (2014) Phytochemical contents and oxidative stability of oils from non-traditional sources. Eur J Lipid Sci Technol 116:1563–1571

    Article  CAS  Google Scholar 

  • JoBaron E, Peterson LR, Finegold SM (1994) Bailey & Scott’s diagnostic microbiology. St. Louis (USA), Mosby. p 168188

  • Kaseke T, Opara UL, Fawole OA (2021) Quality and antioxidant properties of cold-pressed oil from blanched and microwave-pretreated pomegranate seed. Foods 10(4):712

    Article  CAS  Google Scholar 

  • Khan AU, Khan QJ, Gilani AH (2011) Pharmacological basis for the medicinal use of cardamom in asthma. Bangladesh J Pharmacol 6:34–37

    Google Scholar 

  • Kritchevsky D, Chen SC (2005) Phytosterols - health benefits and potential concerns: a review. Nutr Res 25:413–428

    Article  CAS  Google Scholar 

  • Luther M, Parry J, Moore J, Meng J, Zhang Y, Cheng Z, Yu L (2007) Inhibitory effect of chardonnay and black raspberry seed extracts on lipid oxidation in fish oil and their radical scavenging and antimicrobial properties. Food Chem 104:1065–1073

    Article  CAS  Google Scholar 

  • Marongiu B, Piras A, Porcedda S (2004) Comparative analysis of the oil and supercritical CO2 extract of Elettaria cardamomum (L.) Maton. J Agric Food Chem 52(20):6278–6282. https://doi.org/10.1021/jf034819i

    Article  CAS  Google Scholar 

  • McClements DJ (2019) The science of foods: designing our edible future. In: McClements DJ (ed) Future foods: how modern science is transforming the way we eat. Springer International Publishing, Cham (Switzerland)

  • Misharina TA (2016) Antiradical properties of essential oils and extracts from coriander, cardamom, white, red, and black peppers. Appl Biochem Microbiol 52(1):79–86. https://doi.org/10.1134/S0003683816010087

    Article  CAS  Google Scholar 

  • Morsy NFS (2015) A short extraction time of high quality hydrodistilled cardamom (Elettaria cardamomum L. Maton) essential oil using ultrasound as a pretreatment. Ind Crops Prod 65:287–292. https://doi.org/10.1016/j.indcrop.2014.12.012

    Article  CAS  Google Scholar 

  • Nawar WW (1996) Lipids. In: Fennema OR (ed) Food Chemistry. Marcel Dekker, New York, pp 225–319

    Google Scholar 

  • Noumi E, Snoussi M, Alreshidi MM, Rekha PD, Saptami K, Caputo L, De Martino L, Souza LF, Msaada K, Mancini E, Flamini G, Al-Sieni A, De Feo V (2018) Chemical and biological evaluation of essential oils from cardamom species. Molecules 23(11):2818. https://doi.org/10.3390/molecules23112818

    Article  CAS  Google Scholar 

  • Parker TD, Adams DA, Zhou K, Harris M, Yu L (2003) Fatty acid composition and oxidative stability of cold-pressed edible seed oils. J Food Sci 68:1240–1243

    Article  CAS  Google Scholar 

  • Parry JW, Su L, Luther M, Zhou K, Yurawecz MP, Whittaker P, Yu L (2005) Fatty acid content and antioxidant properties of cold-pressed marionberry, boysenberry, red raspberry, and blueberry seed oils. J Agric Food Chem 53:566–573

    Article  CAS  Google Scholar 

  • Parry J, Hao Z, Luther M, Su L, Zhou K, Yu L (2006) Characterization of cold-pressed onion, parsley, cardamom, mullein, roasted pumpkin, and milk thistle seed oils. JAOCS J Am Oil Chem Soc 83(10):847–854. https://doi.org/10.1007/s11746-006-5036-8

    Article  CAS  Google Scholar 

  • Patton T, Barrett J, Brennan J, Moran N (2006) Use of a spectrophotometric bioassay for determination of microbial sensitivity to manuka honey. J Microbiol Methods 64:84–95

    Article  CAS  Google Scholar 

  • Piironen V, Lindsay DG, Miettinen TA, Toivo J, Lampi AM (2000) Plant sterols: biosynthesis, biological function and their importance to human nutrition. J Sci Food Agric 80:939–966

    Article  CAS  Google Scholar 

  • Ramadan MF (2008) Quercetin increases antioxidant activity of soy lecithin in a triolein model system. LWT Food Sci Technol 41:581–587

    Article  CAS  Google Scholar 

  • Ramadan MF (2012) Antioxidant characteristics of phenolipids (quercetin-enriched lecithin) in lipid matrices. Ind Crops Prod 36:363–369

    Article  CAS  Google Scholar 

  • Ramadan MF (2015) Oxidation of β-sitosterol and campesterol in sunflower oil upon deep- and pan-frying of French fries. J Food Sci Technol 52:6301–6311. https://doi.org/10.1007/s13197-015-1738-y

    Article  CAS  Google Scholar 

  • Ramadan MF (2020) Chapter 1-Introduction to cold pressed oils: Green technology, bioactive compounds, functionality, and applications. In: Ramadan MF (ed) Cold pressed oils. Academic Press, Cambridge, MA, United States. pp 1–5, ISBN 9780128181881, https://doi.org/10.1016/B978-0-12-818188-1.00001-3

  • Ramadan MF, Elsanhoty RM (2012) Lipid classes, fatty acids and bioactive lipids of genetically modified potato Spunta with Cry V gene. Food Chem 133:1169–1176

    Article  CAS  Google Scholar 

  • Ramadan MF, Asker MMS, Tadros M (2012) Antiradical and antimicrobial properties of cold-pressed black cumin and cumin oils. Eur Food Res Technol 234:833–844

    Article  CAS  Google Scholar 

  • Ranalli L, Pollastri S, Contento E, Iannucci L (2003) Effect of olive paste kneading process time on the overall quality of virgin olive oil. Euro J Lipid Sci Technol 105:57–67

    Article  CAS  Google Scholar 

  • Saeed A, Sultana B, Anwar F, Mushtaq M, Alkharfy KM, Gilani AH (2014) Antioxidant and antimutagenic potential of seeds and pods of green cardamom (Elettaria cardamomum). Int J Pharm 10:461–469

    Article  Google Scholar 

  • Sim S, Tan SK, Kohlenberg B, Braun NA (2019) Amomum tsao-ko-Chinese black cardamom: Detailed oil composition and comparison with two other cardamom species. Nat Prod Commun. https://doi.org/10.1177/1934578X19857675

    Article  Google Scholar 

  • Soares LA, Sardi JCO, Gullo EP, Pitangui NS, Scorzoni L, Leite FS, Giannini MJM, Almeida AMF (2013) Anti dermatophytic therapy-Prospects for the discovery of new drugs from natural products. Braz J Microbiol 44:1035–1041

    Article  Google Scholar 

  • Souissi M, Azelmat J, Chaieb K, Grenier D (2020) Antibacterial and anti-inflammatory activities of cardamom (Elettaria cardamomum) extracts: Potential therapeutic benefits for periodontal infections. Anaerobe 61:102089. https://doi.org/10.1016/j.anaerobe.2019.102089

    Article  CAS  Google Scholar 

  • Soupas L, Huikko L, Lampi A-M, Piironen V (2005) Esterification affects phytosterol oxidation. Eur J Lipid Sci Technol 107:107–118

    Article  CAS  Google Scholar 

  • Temiz HT, Velioglu SD, Guner KG, Velioglu HM (2021) The use of Raman spectroscopy and chemometrics for the discrimination of lab-produced, commercial, and adulterated cold-pressed oils. Lwt 146:111479

    Article  CAS  Google Scholar 

  • Yuenyong J, Pokkanta P, Phuangsaijai N, Kittiwachana S, Mahatheeranont S, Sookwong P (2021) GC-MS and HPLC-DAD analysis of fatty acid profile and functional phytochemicals in fifty cold-pressed plant oils in Thailand. Heliyon 7(2):e06304

    Article  Google Scholar 

Download references

Funding

The author MFR would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code: 20UQU0043DSR.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: MFR and KE. Methodology: MFR, MK, and KE. Formal analysis and investigation: KE, HHA, and AMAA. Writing—original draft preparation: MFR and KE. Writing-review and editing: MFR and KE. Funding acquisition: MFR. Resources: MK, KE, HHA, and AMAA. Supervision: MFR and KE.

Corresponding author

Correspondence to Mohamed Fawzy Ramadan.

Ethics declarations

Conflict of interest

The authors declare that there are no competing interests.

Consent for publication

Not applicable.

Consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramadan, M.F., Khider, M., Elbanna, K. et al. Rediscovery of cold pressed cardamom (Elettaria cardamomum L.) oil: a good source of fat-soluble bioactives with functional and health-enhancing traits. Rend. Fis. Acc. Lincei 33, 631–642 (2022). https://doi.org/10.1007/s12210-022-01081-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-022-01081-w

Keywords

Navigation