Skip to main content
Log in

The role of primordial atmosphere composition in organic matter delivery to early Earth

  • Statistical thermodynamics and chemical kinetics
  • Published:
Rendiconti Lincei. Scienze Fisiche e Naturali Aims and scope Submit manuscript

Abstract

A model of the atmospheric entry of sub-mm grains is employed to evaluate the effect of the chemical composition of the primordial Earth’s atmosphere on the grain heating, in the context of organic matter delivery. Calculations are performed with spherical, uniform grains of forsterite/fayalite composition as well with the recently proposed white soft mineral (WSM) grains. Different hypotheses on primordial atmosphere composition affect the scale height and the energy transfer. The present work shows that: the total gas budget of the atmosphere is not highly relevant as far as the determination of the heating associated with slowing to subsonic speed is concerned; accordingly, light components (which are expected to be present in a primordial atmosphere and more abundant in the upper one) may be the primary ones in the evaluation of momentum and heat transfer in such scenarios. Strong reduced heating is obtained in the case of an upper atmosphere rich in light components, showing that the composition of the primordial Earth atmosphere may represent the key issue in the delivery of thermolabile organic matter enclosed in sub-mm extraterrestrial grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Abelson PH (1966) Chemical events on the primitive earth. Proc Natl Acad Sci 55(6):1365–1372

    CAS  Google Scholar 

  • Anders E (1989) Pre-biotic organic matter from comets and asteroids. Nature 342(6247):255

    CAS  Google Scholar 

  • Aquilanti V, Maciel GS (2006) Observed molecular alignment in gaseous streams and possible chiral effects in vortices and in surface scattering. Orig Life Evol Biosph 36(5–6):435–441

    CAS  Google Scholar 

  • Aquilanti V, Grossi G, Lombardi A, Maciel GS, Palazzetti F (2008) The origin of chiral distrimination: supersonic molecular beam experiments and molecula dynamics simulations of collisional mechanism. Phys Scr 78(5):058119

    Google Scholar 

  • Aquilanti V, Grossi G, Lombardi A, Maciel GS, Palazzetti F (2011) Aligned molecular collisions and a stereodynamical mechanism for selective chirality. Rend Fis Acc Lincei 22(2):125

    Google Scholar 

  • Aubrey A, Cleaves HJ, Chalmers JH, Skelley AM, Mathies RA, Grunthaner FJ, Ehrenfreund P, Bada JL (2006) Sulfate minerals and organic compounds on Mars. Geology 34(5):357–360

    CAS  Google Scholar 

  • Benison KC, Karmanocky FJ III (2014) Could microorganisms be preserved in Mars gypsum? insights from terrestrial examples. Geology 42(7):615–618

    Google Scholar 

  • Bisceglia E, Micca Longo G, Longo S (2017) Thermal decomposition rate of \(\text{ MgCO }_3\) as an inorganic astrobiological matrix in meteorites. Int J Astrobiol 16(2):130–136

    CAS  Google Scholar 

  • Borg LE, Connelly JN, Nyquist LE, Shih CY, Wiesmann H, Reese Y (1999) The age of the carbonates in martian meteorite ALH84001. Science 286(5437):90–94

    CAS  Google Scholar 

  • Boynton WV, Ming DW, Kounaves SP, Young SMM, Arvidson RE, Hecht MH, Hoffman J, Niles PB, Hamara DK, Quinn RC et al (2009) Evidence for calcium carbonate at the Mars phoenix landing site. Science 325(5936):61–64

    CAS  Google Scholar 

  • Briani G, Pace E, Shore SN, Pupillo G, Passaro A, Aiello S (2013) Simulations of micrometeoroid interactions with the earth atmosphere. Astron Astrophys 552:A53

    Google Scholar 

  • Bruno D, Cacciatore M, Longo S, Rutigliano M (2000) Gas-surface scattering models for particle fluid dynamics: a comparison between analytical approximate models and molecular dynamics calculations. Chem Phys Lett 320(3–4):245–254

    CAS  Google Scholar 

  • Chandrasekhar S (2013) Radiative transfer. Courier Corporation, North Chelmsford

    Google Scholar 

  • Chyba CF, Thomas PJ, Brookshaw L, Sagan C (1990) Cometary delivery of organic molecules to the early earth. Science 249(4967):366–373

    CAS  Google Scholar 

  • Cleaves HJ, Chalmers JH, Lazcano A, Miller SL, Bada JL (2008) A reassessment of prebiotic organic synthesis in neutral planetary atmospheres. Orig Life Evol Biosph 38(2):105–115

    CAS  Google Scholar 

  • De Sanctis MC, Raponi A, Ammannito E, Ciarniello M, Toplis MJ, McSween HY, Castillo-Rogez JC, Ehlmann BL, Carrozzo FG, Marchi S et al (2016) Bright carbonate deposits as evidence of aqueous alteration on (1) Ceres. Nature 536(7614):54

    Google Scholar 

  • Ehlmann BL, Mustard JF, Murchie SL, Poulet F, Bishop JL, Brown AJ, Calvin WM, Clark RN, Des Marais DJ, Milliken RE et al (2008) Orbital identification of carbonate-bearing rocks on Mars. Science 322(5909):1828–1832

    CAS  Google Scholar 

  • Ferus M et al (2017) Formation of nucleobasis in a Miller–Urey reducing atmosphere. Proc Natl Acad Sci 114(17):4306–4311

    CAS  Google Scholar 

  • Flynn GJ (1989) Atmospheric entry heating: a criterion to distinguish between asteroidal and cometary sources of interplanetary dust. Icarus 77(2):287–300

    CAS  Google Scholar 

  • Flynn GJ (1989) Atmospheric entry heating of micrometeorites. Lunar Planet Sci Conf Proc 19:673–682

    Google Scholar 

  • Flynn G, Keller LP, Jacobsen C, Wirick S, Miller MA (2000) Organic carbon in interplanetary dust particles. Bioastronomy 99:213

  • Gendrin A, Mangold N, Bibring JP, Langevin Y, Gondet B, Poulet F, Bonello G, Quantin C, Mustard J, Arvidson R et al (2005) Sulfates in Martian layered terrains: the Omega/Mars express view. Science 307:1587–1591

    CAS  Google Scholar 

  • Glavin DP, Bada JL (2001) Survival of amino acids in micrometeorites during atmospheric entry. Astrobiology 1(3):259–269

    CAS  Google Scholar 

  • Gooding JL, Wentworth SJ, Zolensky ME (1988) Calcium carbonate and sulfate of possible extraterrestrial origin in the EETA 79001 meteorite. Geochim Cosmochim Acta 52(4):909–915

    CAS  Google Scholar 

  • Haldane JBS (1929) Rationalist annual 148: 3; 1933. Science and human life

  • Hart MH (1978) The evolution of the atmosphere of the Earth. Icarus 33(1):23–39

    CAS  Google Scholar 

  • Hayashi C, Nakazawa K, Mizuno H (1979) Earth’s melting due to the blanketing effect of the primordial dense atmosphere. Earth Planet Sci Lett 43(1):22–28

    CAS  Google Scholar 

  • Holland HD (1962) Model for the evolution of the earth’s atmosphere. Petrologic studies: a volume to honor AF Buddigington

  • Holland HD (1984) The chemical evolution of the atmosphere and oceans. Princeton University Press, Princeton

    Google Scholar 

  • Hua X, Buseck PR (1995) Fayalite in the Kaba and Mokoia carbonaceous chondrites. Geochim Cosmochim Acta 59(3):563–578

    CAS  Google Scholar 

  • Hua X, Huss GR, Tachibana S, Sharp TG (2005) Oxygen, silicon, and Mn-Cr isotopes of fayalite in the Kaba oxidized CV3 chondrite: constraints for its formation history. Geochim Cosmochim Acta 69(5):1333–1348

    CAS  Google Scholar 

  • Ikoma M, Genda H (2006) Constraints on the mass of a habitable planet with water of nebular origin. Astrophys J 648(1):696

    CAS  Google Scholar 

  • Jenniskens P, Wilson MA, Packan D, Laux CO, Kruger CH, Boyd ID, Popova O, Fonda M (2000) Meteors: a delivery mechanism of organic matter to the early Earth. In Leonid Storm Research, 57–70. Springer

  • Jogo K, Nakamura T, Noguchi T, Zolotov MY (2009) Fayalite in the vigarano CV3 carbonaceous chondrite: occurrences, formation age and conditions. Earth Planet Sci Lett 287(3–4):320–328

    CAS  Google Scholar 

  • Kasting JF (1993) Earth’s early atmosphere. Science 259(5097):920–926

    CAS  Google Scholar 

  • Langevin Y, Poulet F, Bibring JP, Gondet B (2005) Sulfates in the north polar region of Mars detected by Omega/Mars express. Science 307(5715):1584–1586

    CAS  Google Scholar 

  • Lombardi A, Palazzetti F, Maciel GS, Aquilanti V, Sevryuk MB (2011) Simulation of oriented collision dynamics of simple chiral molecules. Int J Quantum Chem 111(7–8):1651–1658

    CAS  Google Scholar 

  • Lopez-Lozano NE, Eguiarte LE, Bonilla-Rosso G, GarcOliva F, Martinez-Piedragil C, Rooks C, Souza V (2012) Bacterial communities and the nitrogen cycle in the gypsum soils of Cuatro Cienegas basin, Coahuila: a Mars analogue. Astrobiology 12(7):699–709

    CAS  Google Scholar 

  • Love SG, Brownlee DE (1991) Heating and thermal transformation of micrometeoroids entering the earth’s atmosphere. Icarus 89(1):26–43

    Google Scholar 

  • Matrajt G, Brownlee D, Sadilek M, Kruse L (2006) Survival of organic phases in porous IDPs during atmospheric entry: a pulse-heating study. Meteorit Planet Sci 41(6):903–911

    CAS  Google Scholar 

  • Matrajt G, Messenger S, Brownlee D, Joswiak D (2012) Diverse forms of primordial organic matter identified in interplanetary dust particles. Meteorit Planet Sci 47(4):525–549

    CAS  Google Scholar 

  • Maurette M (2006) Micrometeorites and the mysteries of our origins. Springer, Berlin

    Google Scholar 

  • Maurette M, Beccard B, Bonny PH, Brack A, Christophe M, Veyssiere P (1990) C-rich micrometeorites on the early Earth and icy planetary bodies. In ESA Special Publication, vol. 315

  • McKay DS, Gibson EK, Thomas-Keprta KL, Vali H, Romanek CS, Clemett SJ, Chillier XDF, Maechling CR, Zare RN (1996) Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science 273(5277):924–930

    CAS  Google Scholar 

  • Micca Longo G, Longo S (2017) Thermal decomposition of \(\text{ MgCO }_3\) during the atmospheric entry of micrometeoroids. Int J Astrobiol 16(4):368–378

    CAS  Google Scholar 

  • Micca Longo G, Longo S (2018) Theoretical analysis of the atmospheric entry of sub-mm meteoroids of \({\text{ Mg }}_{{x}} {\text{ Ca }}_{{(1-x)}} {\text{ CO }}_{{3}}\) composition. Icarus 310:194–202

    CAS  Google Scholar 

  • Micca Longo G, Piccinni V, Longo S (2019) Evaluation of \(\text{ CaSO }_4\) micrograins in the context of organic matter delivery: thermochemistry and atmospheric entry. Int J Astrobiol 18(4):345–352

    CAS  Google Scholar 

  • Micca Longo G, D’Elia M, Fonti S, Longo S, Mancarella F, Orofino V (2019) Kinetics of white soft minerals (WSMs) decomposition under conditions of interest for astrobiology: a theoretical and experimental study. Geosciences 9(2)

    Google Scholar 

  • Miller SL et al (1953) A production of amino acids under possible primitive Earth conditions. Science 117(3046):528–529

    CAS  Google Scholar 

  • Miller SL (1955) Production of some organic compounds under possible primitive Earth conditions. J Am Chem Soc 77(9):2351–2361

    CAS  Google Scholar 

  • Miller SL, Urey HC (1959) Organic compound synthesis on the primitive Earth. Science 130(3370):245–251

    CAS  Google Scholar 

  • Miyakawa S, Yamanashi H, Kobayashi K, Cleaves HJ, Miller SL (2002) Prebiotic synthesis from CO atmospheres: implications for the origins of life. Proc Natl Acad Sci 99:14628–14631

    CAS  Google Scholar 

  • Oparin AI (1924) Proischogdenie zhizni moscovsky: Robotchii

  • Öpik EJ (2004) Physics of meteor flight in the atmosphere. Courier Corporation, North Chelmsford

    Google Scholar 

  • Palazzetti F, Tsai PY, Lombardi A, Nakamura M, Che DC, Kasai T, Aquilanti V (2013) Aligned molecules: chirality discrimination in photodissociation and in molecular dynamics. Rend Fis Acc Lincei 24(3):299–308

    Google Scholar 

  • Palomba E, Zinzi A, Cloutis EA, D’Amore M, Grassi D, Maturilli A (2009) Evidence for Mg-rich carbonates on Mars from a 3.9 \(\mu\)m absorption feature. Icarus 203(1):58–65

    CAS  Google Scholar 

  • Pietrucci F, Saitta AM (2015) Formamide reaction network in gas phase and solution via a unified theoretical approach: toward a reconciliation of different brebiotic scenarios. Proc Natl Acad Sci 112(49):15030–15035

    CAS  Google Scholar 

  • Pirani F, Capitelli M, Colonna G, Laricchiuta A (2019) Transport cross sections from accurate intermolecular forces. Rend Fis Acc Lincei. Scienze Fisiche e Naturali 30(1):49–56

    Google Scholar 

  • Pizzarello S, Cooper GW, Flynn GJ (2006) The nature and distribution of the organic material in carbonaceous chondrites and interplanetary dust particles. Meteorit Early Solar Syst II 1:625–651

    Google Scholar 

  • Rezende MVC, Coutinho ND, Palazzetti F, Lombardi A, Carvalho-Silva VH (2019) Nucleophilic substitution vs elimination reaction of bisulfide ions with substituted methanes: exploration of chiral selectivity by stereodirectional first-principles dynamics and transition state theory. J Mol Model 25(8):227

    Google Scholar 

  • Rivkin AS, Volquardsen EL, Clark BE (2006) The surface composition of Ceres: discovery of carbonates and iron-rich clays. Icarus 185(2):563–567

    CAS  Google Scholar 

  • Saitta AM, Saija F (2014) Miller experiments in atomistic computer simulations. Proc Natl Acad Sci 111(38):13768–13773

    CAS  Google Scholar 

  • Schlesinger G, Miller SL (1983) Prebiotic synthesis in atmospheres containing \(\text{ CH }_4\), CO and \(\text{ CO }_2\). I. Amino acids. J Mol Evol 19:376–382

    CAS  Google Scholar 

  • Sekine Y, Sugita S, Kadono T, Matsui T (2003) Methane production by large iron meteorite impacts on early Earth. J Geophys Res 108:5070

    Google Scholar 

  • Steele IM (1986) Compositions and textures of relic forsterite in carbonaceous and unequilibrated ordinary chondrites. Geochim Cosmochim Acta 50(7):1379–1395

    CAS  Google Scholar 

  • Su TM, Palazzetti F, Lombardi A, Grossi G, Aquilanti V (2013) Molecular alignment and chirality in gaseous streams and vortices. Rend Fis Acc Lincei 24(3):291–297

    Google Scholar 

  • Trainer MG (2013) Atmospheric prebiotic chemistry and organic hazes. Curr Org Chem 17(16):1710–1723

    CAS  Google Scholar 

  • Van Schmus WR, Wood JA (1967) A chemical-petrologic classification for the chondritic meteorites. Geochim Cosmochim Acta 31(5):747–765

    Google Scholar 

  • Wentworth SJ, Gooding JL (1994) Carbonates and sulfates in the Chassigny meteorite: further evidence for aqueous chemistry on the SNC parent planet. Meteoritics 29(6):860–863

    CAS  Google Scholar 

  • Wray JJ, Murchie SL, Bishop JL, Ehlmann BL, Milliken RE, Wilhelm MB, Seelos KD, Chojnacki M (2016) Orbital evidence for more widespread carbonate-bearing rocks on Mars. J Geophys Res Planets 121(4):652–677

    CAS  Google Scholar 

  • Zahnle K, Schaefer L, Fegley B (2010) Earth’s earliest atmospheres. Cold Spring Harbor perspectives in biology p. a004895

  • Zanda B (2004) Chondrules. Earth Planet Sci Lett 224(1–2):1–17

    CAS  Google Scholar 

Download references

Acknowledgements

This paper was partially supported by PON 2014–2020 within the project ”Close to the Earth”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savino Longo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is the peer-reviewed version of a presentation, at the Conference Statistical thermodynamics and chemical kinetics: far away from equilibrium held at the Accademia Nazionale dei Lincei in Rome, 25–26 June 2019. Program and abstracts at the link Statistical Thermodynamics and Chemical—Manifestazione|Accademia Nazionale dei Lincei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Micca Longo, G., Longo, S. The role of primordial atmosphere composition in organic matter delivery to early Earth. Rend. Fis. Acc. Lincei 31, 53–64 (2020). https://doi.org/10.1007/s12210-020-00878-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-020-00878-x

Keywords

Navigation