Skip to main content

Advertisement

Log in

Coastal defence techniques and climate change: a review

  • Coastal Protection
  • Published:
Rendiconti Lincei. Scienze Fisiche e Naturali Aims and scope Submit manuscript

Abstract

Coastal areas are characterized by a high level of risk because of its intrinsic vulnerability to the sea action and the high number of socio-economic activities as well as of marine habitats. Traditional methodologies for the design of coastal defences cannot be applied straightforward in the presence of the effects of climate change because of the need to take into account the non-stationarity of natural processes. A novel approach based on an integrated coastal zone management is required to counteract the main consequences of global warming effects in coastal areas (i.e. sea level rise and the increase in frequency and magnitude of extreme events). In particular, besides institutional measures and preparedness and prevention actions, also structural intervention should be implemented. First of all, the upgrade of existing coastal defence structures should be considered, where this strategy is technically and economically feasible. In addition, it is suggested the realisation of Nature-Based Solutions, which consist on using natural processes to create a resilient system. Finally, the integration of traditional and innovative techniques for the design of coastal defences to realise resilient or, even better, antifragile systems is the most preferable approach. Indeed, perfect knowledge of future conditions is not needed for the design of antifragile systems, since this kind of structures are able to improve themselves when hit by unexpected events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arns A, Dangendorf S, Jensen J, Talke S, Bender J (2017) Sea-level rise induced amplification of coastal protection design heights. Sci Rep 7(40171):1–9. https://doi.org/10.1038/srep40171

    Article  CAS  Google Scholar 

  • Babovic F, Babovic V, Mijic A (2018) Antifragility and the development of urban water infrastructure. Int J Water Resour Dev 34(4):499–509. https://doi.org/10.1080/07900627.2017.1369866

    Article  Google Scholar 

  • Bender, M. A., Knutson, T. R., Tuleya, R. E., Sirutis, J. J., Vecchi, G. a, Garner, S. T., & Held, I. M. (2010). Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science, 327(5964), 454–458. https://doi.org/10.1126/science.1180568

    Article  CAS  Google Scholar 

  • Blečić I, Cecchini A (2017) On the antifragility of cities and of their buildings. City Territory Archit. https://doi.org/10.1186/s40410-016-0059-4

    Article  Google Scholar 

  • Bridges TS, Burks-Copes KA, Bates ME, Collier ZA, Fischenich JC, Piercy CD, Russo EJ, Shafer DJ, Suedel BC, Gailani JZ, Rosati JD (2015) Use of Nature and Nature-Based Features (NNBF) for Coastal Resilience. US Army Engineer Research and Development Center, Environmental Laboratory, Coastal and Hydraulics Laboratory

  • Burcharth HF, Andersen TL, Lara JL (2014) Upgrade of coastal defence structures against increased loadings caused by climate change: a first methodological approach. Coast Eng 87:112–121. https://doi.org/10.1016/j.coastaleng.2013.12.006

    Article  Google Scholar 

  • Cavallaro L, Iuppa C, Foti E (2017) Effect of partial use of venice flood barriers. J Mar Sci Eng 5(4):58. https://doi.org/10.3390/jmse5040058

    Article  Google Scholar 

  • Chini N, Stansby PK (2012) Extreme values of coastal wave overtopping accounting for climate change and sea level rise. Coast Eng 65:27–37. https://doi.org/10.1016/j.coastaleng.2012.02.009

    Article  Google Scholar 

  • Chini Nicolas, Stansby P, Leake J, Wolf J, Roberts-Jones J, Lowe J (2010) The impact of sea level rise and climate change on inshore wave climate: a case study for East Anglia (UK). Coast Eng 57(11–12):973–984. https://doi.org/10.1016/j.coastaleng.2010.05.009

    Article  Google Scholar 

  • Christidis N, Stott PA, Brown SJ (2011) The role of human activity in the recent warming of extremely warm daytime temperatures. J Clim 24(7):1922–1930. https://doi.org/10.1175/2011JCLI4150.1

    Article  Google Scholar 

  • Church JA, Clark PU, Cazenave A, Gregory JM, Jevrejeva S, Levermann A, Merrifield MA, Milne GA, Nerem RS, Nunn PD, Payne AJ, Stammer D, Unnikrishnan AS (2013) 2013: Sea level change. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1137–1216. https://doi.org/10.1017/CB09781107415315.026

  • de Schipper MA, de Vries S, Ruessink G, de Zeeuw RC, Rutten J, van Gelder-Maas C, Stive MJ (2016) Initial spreading of a mega feeder nourishment: observations of the Sand Engine pilot project. Coast Eng. 111:23–38. https://doi.org/10.1016/j.coastaleng.2015.10.011

    Article  Google Scholar 

  • Duffy PB, Tebaldi C (2012) Increasing prevalence of extreme summer temperatures in the U.S. Clim Change 111(2):487–495. https://doi.org/10.1007/s10584-012-0396-6

    Article  Google Scholar 

  • European Commission Union (2015). Nature-based solutions & re-naturing cities. Final report of the horizon 2020 expert group on ‘Nature-based solutions and re-naturing cities’ (full version). https://doi.org/10.2777/765301

  • European Environment Agency (2015) State of Europe’s seas. EEA Report No 2/2015

  • European Environment Agency (2016) Climate change, impacts and vulnerability in Europe—an indicator-based report. EEA Report No 1/2017

  • Favaretto C, Martinelli L, Ruol P (2019) Coastal flooding hazard due to overflow using a level II method: application to the venetian littoral. Water (Switzerland). https://doi.org/10.3390/w11010134

    Article  Google Scholar 

  • Fletcher CA, Spencer T (2005) Flooding and environmental challenges for venice and its lagoon: state of knowledge. Cambridge University Press, Cambridge

    Google Scholar 

  • Galassi G, Spada G (2014) Sea-level rise in the Mediterranean Sea by 2050: roles of terrestrial ice melt, steric effects and glacial isostatic adjustment. Glob Planet Change 123:55–66. https://doi.org/10.1016/j.gloplacha.2014.10.007

    Article  Google Scholar 

  • Gatto P, Carbognin L (1981) The lagoon of venice: Natural environmental trend and man-induced modification. Hydrol Sci Bull 26(4):379–391. https://doi.org/10.1080/02626668109490902

    Article  Google Scholar 

  • Gersonius B, Ashley R, Pathirana A, Zevenbergen C (2013) Climate change uncertainty: building flexibility into water and flood risk infrastructure. Clim. Change 116(2):411–423. https://doi.org/10.1007/s10584-012-0494-5

    Article  Google Scholar 

  • González-Alemán JJ, Pascale S, Gutierrez-Fernandez J, Murakami H, Gaertner MA, Vecchi GA (2019) Potential increase in hazard from mediterranean hurricane activity with global warming. Geophys Res Lett 2:1754–1764. https://doi.org/10.1029/2018gl081253

    Article  Google Scholar 

  • Groven K, Aall C, Van Den Berg M (2012) Integrating climate change adaptation into civil protection: comparative lessons from Norway, Sweden and the Netherlands. Local Environ 17(6–7):679–694

    Article  Google Scholar 

  • Guillén J, Martínez-Vidal J, Triviño A, Soler G, Fages E, Gironés S, Martínez-Carbonell M, Santos L, Puglia D, Torre E (2014) Good practice guide for the management, collection and treatment of algae and marine plant debris on beaches. Project Seamatter LIFE11 ENV/ES/000600. Instituto de Ecología Litoral, El Campello, 24

  • Hallegatte S (2009) Strategies to adapt to an uncertain climate change. Glob Environ Change 19(2):240–247. https://doi.org/10.1016/j.gloenvcha.2008.12.003

    Article  Google Scholar 

  • Hemer MA, Fan Y, Mori N, Semedo A, Wang XL (2013) Projected changes in wave climate from a multi-model ensemble. Nat Clim Change 3(1):1–6. https://doi.org/10.1038/nclimate1791

    Article  Google Scholar 

  • Hoegh-Guldberg O, Poloczanska ES, Skirving W, Dove S (2017) Coral reef ecosystems under climate change and ocean acidification. Front Mar Sci. https://doi.org/10.3389/fmars.2017.00158

    Article  Google Scholar 

  • IPCC (2007) Report of the 26 Th Session of the Ipcc. (May). http://www.ipcc.ch/meetings/session26/final_report_26.pdf

  • IPCC (2014) Climate Change 2014: synthesis report. In IPCC (Ed.), Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. Retrieved from http://doi.wiley.com/10.1046/j.1365-2559.2002.1340a.x

  • Isobe M (2013) Impact of global warming on coastal structures in shallow water. Ocean Eng 71:51–57. https://doi.org/10.1016/j.oceaneng.2012.12.032

    Article  Google Scholar 

  • Italian Court of Cassation, sez. IV pen., 13th March 2019 n. 11158

  • Iuppa C, Cavallaro L, Giarrusso C, Musumeci RE, Foti E (2019) Coastal flooding risk assessment by a neural network approach, SCACR2019. International Short Course/Conference on Applied Coastal Research Engineering, Geology, Ecology & Management, 9th–11th September 2019, Bari, Italy

  • Keim ME (2008) Building human resilience: the role of public health preparedness and response as an adaptation to climate change. Am J Prev Med 35(5):508–516. https://doi.org/10.1016/j.amepre.2008.08.022

    Article  Google Scholar 

  • Latorre Mollá K et al (2015) Project Seamatter LIFE11 ENV/ES/000600 Final Report

  • Lin N, Emanuel K, Oppenheimer M, Vanmarcke E (2012) Physically based assessment of hurricane surge threat under climate change. Nat Clim Change 2(6):462–467

    Article  Google Scholar 

  • Lowe JA, Gregory JM (2005) The effects of climate change on storm surges around the United Kingdom. Philos Trans R Soc A Math Phys Eng Sci 363(1831):1313–1328. https://doi.org/10.1098/rsta.2005.1570

    Article  CAS  Google Scholar 

  • Magoon OT, Edge BL, Stone KE (2001) The impact of anthropogenic activities on coastal erosion. Coast Eng 2000:3934–3940

    Google Scholar 

  • Malanotte-Rizzoli P (2018) Projections of sea level rise in oceans and in the Mediterranean sea: what MoSE can do for Venice. Marchi Lecture. Catania, 22/06/2018

  • Marsooli R, Lin N, Emanuel K, Feng K (2019) Climate change exacerbates hurricane flood hazards along US Atlantic and Gulf Coasts in spatially varying patterns. Nat. Commun. 10(1):1–9

    Article  CAS  Google Scholar 

  • Ministero dell’Ambiente e della Tutela del Territorio e del Mare (2017) L’Erosione Costiera in Italia. Le variazioni della linea di costa dal 1960 al 2012

  • Mudersbach C, Jensen J (2010) Nonstationary extreme value analysis of annual maximum water levels for designing coastal structures on the German North Sea coastline. J Flood Risk Manag 3(1):52–62. https://doi.org/10.1111/j.1753-318x.2009.01054.x

    Article  Google Scholar 

  • Nicholls RJ, Wong PP, Burkett V, Codignotto J, Hay J, McLean R, Ragoonaden S, Woodroffe CD, Abuodha PA, Arblaster J, Brown B (2007) Coastal systems and low-lying areas. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, pp 315–356

  • Regione Lazio, Eurobuilding S.r.l., & Nomisma (2005) Projet BEACHMED—Phase C. Attività 1: Fabbisogni di sabbia per la ricostruzione e la manutenzione dei litorali “La valutazione economica delle località balneari” (studio sviluppato dalla EUROBUILDING S.r.l. con la consulenza della NOMISMA S.p.A. ed il c. 101–109

  • Rijkswaterstaat (2016) The Sand Motor: driver of innovative coast maintenance

  • Sanchez-Arcilla A, Sierra JP, Brown S, Casas-Prat M, Nicholls RJ, Lionello P, Conte D (2016) A review of potential physical impacts on harbours in the Mediterranean Sea under climate change. Regional Environ Change. 16(8):2471–2484. https://doi.org/10.1007/s10113-016-0972-9

    Article  Google Scholar 

  • SCAPE/Landscape Architecture PLLC, Brinckerhoff P, Steven Institute of Technology, Ocean and Coastal Consultants, SeArc Consulting, The New York Harbor School, LOT-EK, MTWTF, & Greenberg, P (2013) Living Breakwaters. IP EDition Staten Isalnd and Raritan Bay. https://doi.org/10.1002/j.2326-1951.1961.tb00433.x

  • Sheffield J, Wood EF, Roderick ML (2012) Little change in global drought over the past 60 years. Nature 491(7424):435–438. https://doi.org/10.1038/nature11575

    Article  CAS  Google Scholar 

  • Simmons AJ, Willett KM, Jones PD, Thorne PW, Dee DP (2010) Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: inferences from reanalyses and monthly gridded observational data sets. J Geophys Res Atmos 115(1):1–21. https://doi.org/10.1029/2009JD012442

    Article  Google Scholar 

  • Stive MJ, de Schipper MA, Luijendijk AP, Aarninkhof SG, van Gelder-Maas C, de Vries JS, de Vries S, Henriquez M, Marx S, Ranasinghe R (2013) A new alternative to saving our beaches from sea-level rise: the sand engine. Journal of Coastal Research. 29(5):1001–1008. https://doi.org/10.2112/jcoastres-d-13-00070.1

    Article  Google Scholar 

  • Sunday JM, Fabricius KE, Kroeker KJ, Anderson KM, Brown NE, Barry JP, Connell SD, Dupont S, Gaylord B, Hall-Spencer JM, Klinger T (2017) Ocean acidification can mediate biodiversity shifts by changing biogenic habitat. Nat Clim Change. 7(1):81–85. https://doi.org/10.1038/nclimate3161

    Article  CAS  Google Scholar 

  • Taleb NN (2012) Antifragile. Things that gain from disorder. Random House Incorporated

  • Tomaselli G et al (2016) LIFE11 NAT/IT/000232 LEOPOLDIA. Final Report. 1–112

  • Tomaselli G, Carullo L, Sciandrello S (2014) LIFE11 NAT/IT/000232. Linee guida per fronteggiare l’ erosione costiera Nelle aree del progetto Life Leopoldia

  • Trincardi F, Barbanti A, Bastianini M, Benetazzo A, Cavaleri L, Chiggiato J, Papa A, Pomaro A, Sclavo M, Tosi L, Umgiesser G (2016) The 1966 flooding of Venice: what time taught us for the future. Oceanography 29:178–186

    Article  Google Scholar 

  • Turner RK, Burgess D, Hadley D, Coombes E, Jackson N (2007) A cost–benefit appraisal of coastal managed realignment policy. Global Environ Change. 17(3–4):397–407. https://doi.org/10.1016/j.gloenvcha.2007.05.006

    Article  Google Scholar 

  • van Rijn LC (2011) Coastal erosion and control. Ocean Coast Manag 54(12):867–887. https://doi.org/10.1016/j.ocecoaman.2011.05.004

    Article  Google Scholar 

  • Van Slobbe E, de Vriend HJ, Aarninkhof S, Lulofs K, de Vries M, Dircke P (2013) Building with Nature: in search of resilient storm surge protection strategies. Nat Hazards. 66(3):1461–1480. https://doi.org/10.1007/s11069-012-0342-y

    Article  Google Scholar 

  • Van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T (2011) The representative concentration pathways: an overview. Clim Change. 109(1–2):5. https://doi.org/10.1007/s10584-011-0148-z

    Article  Google Scholar 

  • Vellinga P, Marinova NA, Lionello P, Gualdi S, Artale V, Jorda G (2011) Sea level scenarios for Venice for 2100: an International assessment. Wageningen UR

  • Vousdoukas MI, Voukouvalas E, Annunziato A, Giardino A, Feyen L (2016) Projections of extreme storm surge levels along Europe. Clim Dyn 47(9–10):3171–3190. https://doi.org/10.1007/s00382-016-3019-5

    Article  Google Scholar 

  • Vousdoukas MI, Mentaschi L, Voukouvalas E, Verlaan M, Jevrejeva S, Jackson LP, Feyen L (2018) Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard. Nat Commun. 9(1):1–2. https://doi.org/10.1038/s41467-018-04692-w

    Article  CAS  Google Scholar 

  • Williams AT, Rangel-Buitrago N, Pranzini E, Anfuso G (2018) The management of coastal erosion. Ocean Coast Manag 156:4–200. https://doi.org/10.1016/j.ocecoaman.2017.03.022

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partly supported by the EU funded project HYDRALAB PLUS (proposal number 654110), by the project “NEWS - Nearshore hazard monitoring and Early Warning System” (code C1-3.2-60) in the framework of the EU programme INTERREG V-A Italia Malta 2014–2020, and by the University of Catania (Italy) funded project “Interazione onde correnti nella regione costiera (INOCS)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Foti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foti, E., Musumeci, R.E. & Stagnitti, M. Coastal defence techniques and climate change: a review. Rend. Fis. Acc. Lincei 31, 123–138 (2020). https://doi.org/10.1007/s12210-020-00877-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-020-00877-y

Keywords

Navigation