Skip to main content

Advertisement

Log in

Short- to mid-term shoreline changes along the southeastern coast of Gran Canaria Island (Spain)

  • Coastal Protection
  • Published:
Rendiconti Lincei. Scienze Fisiche e Naturali Aims and scope Submit manuscript

Abstract

The paper focuses on the mid-term shoreline evolution and recent short-term shoreline trends of five sandy beaches located along the southeastern coast of Gran Canaria. Using the Digital Shoreline Analysis System (DSAS), shoreline changes during the period 1961–2016 and sub-periods 1961–1998, 1998–2010 and 2010–2016 were assessed. Major results highlight a mid-term shoreline retreat of the southern coast stretch (Maspalomas Beach) and shoreline advance/stability of the eastern coast stretch (El Inglés, El Veril, Las Burras and San Agustin beaches), conversely positive and negative shoreline trends of Maspalomas and the eastern beaches, respectively, during the short-term period 2010–2016. Shoreline data and wind/wave data covering the period 1958–2004 highlight for Maspalomas a probable relationship between its negative mid-term shoreline evolution and a relative major severity of wave climate along the southern coast stretch. Moreover, regarding the negative short-term shoreline trend assessed for eastern beaches, an increase of wave dynamics is hypothesized, to be investigated in the near future. For the possible influence of hard defence structures on shoreline changes, data suggest that the groins placed along El Inglés, Las Burras and El Veril beaches have positively influenced shoreline trends in a first period, but did not contribute to overall beach stabilization or progradation in later periods. Results and data acquired during this study, concerning not only shoreline changes and related rates, but also possible causal aspects, can validly support both future research on sandy beaches in southeastern Gran Canaria and management interventions aimed at the development of coastal sustainable tourism in the studied coastal area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alcántara-Carrió J, Fontán A (2009) Factors controlling the morphodynamics and geomorphologic evolution of a cuspate foreland in a volcanic intraplate island (Maspalomas, Canary Islands). J Coast Res SI 56: 683–687. ISSN 0749-0208

  • Alonso I, Montesdeoca I, Vivares A, Alcantara-Carrio J (2001) Variabilidad granulometrica y de la linea de costa en las playas de El Ingles y Maspalomas (Gran Canaria). Geotemas 3(1):39–42

    Google Scholar 

  • Alonso I, Alcántara-Carrió J, Cabrera L (2002) Tourist resorts and their impact on Beach Erosion at Sotavento Beaches, Fuerteventura, Spain. J Coast Res SI 36:1–7

    Article  Google Scholar 

  • Anfuso G, Rangel-Buitrago N, Cortés-Useche C, Iglesias CB, Gracia FJ (2016) Characterization of storm events along the Gulf of Cadiz (eastern central Atlantic Ocean). Int J Climatol 36:3690–3707

    Article  Google Scholar 

  • ASTM (2007) Standard test method for particle-size analysis of soils. In: Annual Book of ASTM Standards, ASTM, West Conshohocken

  • ASTM (2018) Standard practice for dry preparation of soil samples for particle-size analysis and determination of soil constants. https://www.astm.org/Standards/D421.htm. Accessed 1 Sept 2018

  • Bamunawala J, Maskey S, Duong TM, Van der Spek A (2018) Significance of fluvial sediment supply in coastline modelling at tidal inlets. J Mar Sci Eng 6(3):79. https://doi.org/10.3390/jmse6030079

    Article  Google Scholar 

  • Bechtel B (2016) The climate of the Canary Islands by annual cycle parameters. The international archives of the photogrammetry, remote sensing and spatial information sciences. vol XLI-B8 (2016) XXIII ISPRS Congress, 12–19 July 2016. Czech Republic, Prague

    Google Scholar 

  • Besset M, Anthony EJ, Sabatier F (2017) River delta shoreline reworking and erosion in the Mediterranean and Black Seas: the potential roles of fluvial sediment starvation and other factors. Elem Sci Anthr 5:54. https://doi.org/10.1525/elementa.139

    Article  Google Scholar 

  • Boak EH, Turner IL (2005) Shoreline definition and detection: a review. J Coast Res 21:688–703

    Article  Google Scholar 

  • Chiri H, Pacheco M, Rodríguez G (2013) Spatial variability of wave energy resources around the Canary Islands. WIT Trans Ecol Environ 169:15–26

    Article  Google Scholar 

  • Crowell M, Leatherman SP, Buckley M (1993) Shoreline change rate analysis: long term versus short term data. Shore Beach 61(2):13–20

    Google Scholar 

  • Crowell M, Douglas BC, Leatherman S (1997) On forecasting future US shoreline positions: a test of algorithms. J Coast Res 13:1245–1255

    Google Scholar 

  • del Arco M, Salas M, Acebes JR, del Marrero MC, Reyes-Betancort JA, Péerez-de-Paz PL (2002) Bioclimatology and climatophilous vegetation of Gran Canaria (Canary Islands). Ann Bot Finnici 39:15–41

    Google Scholar 

  • Del Río L, Gracia FJ, Benavente J (2013) Shoreline change patterns in sandy coasts. A case study in SW Spain. Geomorphology 196:252–266. https://doi.org/10.1016/j.geomorph.2012.07.027

    Article  Google Scholar 

  • Di Paola G, Aucelli PPC, Benassai G, Iglesias J, Rodriguez G, Rosskopf CM (2018) The assessment of the coastal vulnerability and exposure degree of Gran Canaria Island (Spain) with a focus on the coastal risk of Las Canteras Beach in Las Palmas de Gran Canaria. J Coast Conserv 22(5):1001–1015. https://doi.org/10.1007/s11852-017-0574-9

    Article  Google Scholar 

  • Di Paola G, Iglesias J, Rodríguez G, Benassai G, Aucelli PPC, Pappone G (2011) Estimating coastal vulnerability in a meso-tidal beach by means of quantitative and semi-quantitative methodologies. J Coast Res 61:303–308. https://doi.org/10.2112/SI61-001.1

    Article  Google Scholar 

  • EEA (2015) State of the Europe’s sea. EEA Report No. 2/2015. European Environment Agency, Luxembourg: Publications Office of the European Union, 2017. ISBN 978-92-9213-859-2. https://doi.org/10.2800/0466

  • EUROSION (2019) Living with coastal erosion in Europe: sediment and space for sustainability. Reports on-line. https://www.eurosion.org

  • Ferrer-Valero N, Hernández-Calvento L, Hernández-Cordero AI (2017) Human impacts quantification on the coastal landforms of Gran Canaria Island (Canary Islands). Geomorphology 286:58–67. https://doi.org/10.1016/j.geomorph.2017.02.028

    Article  Google Scholar 

  • Fontán A, Alcántara-Carrió J, Correa ID (2012) Combined beach-inner shelf erosion in the short and medium term (Maspalomas, Canary Islands). Geol Acta 10(4):411–426

    Google Scholar 

  • Fontán-Bouzas A, Alcántara-Carrio J, Albarracín S, Baptista P, Silva P, Portz L, Manzolli R (2019) Multiannual Shore Morphodynamics of a Cuspate Foreland: Maspalomas (Gran Canaria, Canary Islands). J Mar Sci Eng 7:416

    Article  Google Scholar 

  • Gorman L, Morang A, Larson R (1998) Monitoring the coastal environment. Part IV: mapping, shoreline changes, and bathymetric analysis. J Coast Res 14:61–92

    Google Scholar 

  • GRAFCAN (2018) Mapas de Canarias. https://www.grafcan.es/. Accessed 10 Dec 2018

  • Grottoli E, Bertoni D, Ciavola P (2017) Short- and medium-term response to storms on three Mediterranean coarse-grained beaches. Geomorphology 295:738–748. https://doi.org/10.1016/j.geomorph.2017.08.007

    Article  Google Scholar 

  • Guedes Soares C (2008) Hindcast of dynamic processes of the ocean and coastal area of Europe (HIPOCAS). Coast Eng 55:825–826

    Article  Google Scholar 

  • Hamm L, Capobianco M, Dette HH, Lechuga A, Spanhoff R, Stive MJF (2002) A summary of European experience with shore nourishment. Coast Eng 47:237–264

    Article  Google Scholar 

  • Hernández L, Alonso I, Sánchez-Pérez I, Alcántara-Carrió J, Montesdeoca I (2007) Shortage of Sediments in the Maspalomas Dune Field (Gran Canaria, Canary Islands) deduced from analysis of aerial photographs, foraminiferal content, and sediment transport trends. J Coast Res 23(4):993–999

    Article  Google Scholar 

  • Hinkel J, Nicholls RJ, Tol RSJ, Wang ZB, Hamilton JM, Boot G, Vafeidis AT, McFadden L, Ganopolski A, Klein RJT (2013) A global analysis of erosion of sandy beaches and sea-level rise: an application of DIVA. Glob Planet Change 111:150–158

    Article  Google Scholar 

  • Luijendijk A, Hagenaars G, Ranasinghe R, Baart F, Donchyts G, Aarninkhof S (2018) The state of the world’s beaches. Sci Rep 8:6641. https://doi.org/10.1038/s41598-018-24630-6

    Article  CAS  Google Scholar 

  • Menéndez I, Silva PG, Martín-Betancor M, Pérez-Torrado FJ, Guillou H, Scaillet S (2008) Fluvial dissection, isostatic uplift, and geomorphological evolution of volcanic islands (Gran Canaria, Canary Islands, Spain). Geomorphology 102:189–203. https://doi.org/10.1016/j.geomorph.2007.06.022

    Article  Google Scholar 

  • Martinez JM (1988) Accretion-erosion in the beaches of the Canary Islands (Spain). Proceedings of the international conference on coastal engineering (ASCE) 3:2738–2752

  • Mentaschi L, Vousdoukas MI, Pekel J, Voukouvalas E, Feyen L (2018) Global long-term observations of coastal erosion and accretion. Sci Rep 8:12876. https://doi.org/10.1038/s41598-018-30904-w

    Article  CAS  Google Scholar 

  • Morton ID, Bowers J, Mould G (1997) Estimating return period wave heights and wind speeds using a seasonal point process model. Coast Eng 31(1–4):305–326

    Article  Google Scholar 

  • Nguyen AT, Nguyen NT, Luong TT, Luc H (2018) Tourism and beach erosion: valuing the damage of beach erosion for tourism in the Hoi An World Heritage site, Vietnam. Environ Dev Sustain. https://doi.org/10.1007/s10668-018-0126-y

    Article  Google Scholar 

  • Nicholls RJ, Wong PP, Burket VR, Codignotto J, Hay JE, McLean RF, Ragoonaden S, Woodroffe CD (2007) Coastal systems and low-lying areas. In: Parry ML, Canziani OF, Palutikof JP, Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 315–356

    Google Scholar 

  • Pilar P, Guades Soares C, Carretero JC (2008) 44-year wave hindcast for the east Atlantic European coast. Coast Eng 55:861–871. https://doi.org/10.1016/j.coastaleng.2008.02.027

    Article  Google Scholar 

  • Puig M, Del Río L, Plomaritis TA, Benavente J (2016) Contribution of storms to shoreline changes in mesotidal dissipative beaches: case study in the Gulf of Cádiz (SW Spain). Nat Hazards Earth Syst Sci 16:2543–2557. https://doi.org/10.5194/nhess-16-2543-2016

    Article  Google Scholar 

  • Quevedo Medina U, Hernández-Calvento L (2014) Evolución reciente de la línea de costa en un sistema playadunas deficitario (Maspalomas, Gran Canaria). XVI Congreso Nacional de Tecnologías de la Información Geográfica 2014, Alicante. 163–171. ISBN: 978-84-940784-4-6|84-940784-4-5

  • Rangel-Buitrago N, Anfuso G (2013) Winter wave climate, storms and regional cycles: the SW Spanish Atlantic coast. Int J Climatol 33:2142–2156

    Article  Google Scholar 

  • Rizzo A, Aucelli PPC, Gracia FJ, Anfuso G (2018) A novelty coastal susceptibility assessment method: application to Valdelagrana area (SW Spain). J Coast Conserv 22(5):973–987. https://doi.org/10.1007/s11852-017-0552-2

    Article  Google Scholar 

  • Rosskopf CM, Di Paola G, Atkinson DE, Rodríguez G, Walker IJ (2018) Recent shoreline evolution and beach erosion along the central Adriatic coast of Italy: the case of Molise region. J Coast Conserv 22(5):879–895. https://doi.org/10.1007/s11852-017-0550-4

    Article  Google Scholar 

  • Santana-Cordero AM, Bürgi M, Hersperger AM, Hernández-Calvento L, Monteiro-Quintana ML (2017) A century of change in coastal sedimentary landscapes in the Canary Islands (Spain): change, processes, and driving forces. Land Use Policy 68:107–116

    Article  Google Scholar 

  • Sheppard C (2018) World Seas: An Environmental Evaluation: Volume I: Europe, The Americas and West Africa (English Edition), Academic Press, p 912

  • Thieler ER, Himmelstoss EA, Zichichi JL, Ayhan E (2009) Digital Shoreline Analysis System (DSAS) version 4.0—an ArcGIS extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2008-1278

  • Valdemoro HI, Jimènez JA (2006) The influence of shoreline dynamics on the use and exploitation of Mediterranean tourist beaches. Coast Manag 34:405–423. https://doi.org/10.1080/08920750600860324

    Article  Google Scholar 

  • Zhang K, Douglas BC, Leatherman SP (2004) Global warming and coastal erosion. Clim Change 64:41–58

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluigi Di Paola.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Paola, G., Rodríguez, G. & Rosskopf, C.M. Short- to mid-term shoreline changes along the southeastern coast of Gran Canaria Island (Spain). Rend. Fis. Acc. Lincei 31, 89–102 (2020). https://doi.org/10.1007/s12210-020-00872-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-020-00872-3

Keywords

Navigation