Skip to main content
Log in

Potential recharge areas of deep aquifers: an application to the Vercelli–Biella Plain (NW Italy)

  • Foreseeing Groundwater Resources
  • Published:
Rendiconti Lincei. Scienze Fisiche e Naturali Aims and scope Submit manuscript

Abstract

Deep aquifers typically serve as a key source of drinking water due to their good groundwater quality. Then the identification of deep aquifers recharge areas provides the local administration with a management tool to protect groundwater, through the implementation of legislative measures for the control of pollution sources. However, the location and size of recharge areas of deep aquifers are often difficult to define and generally require a large amount of data. The aim of this paper is to propose a method to identify potential recharge, throughflow and discharge areas of deep aquifers on a regional scale, due to their hydrodynamic features. As the proposed method identifies where deep-aquifer recharge can occur, but not the recharge rate, delimited areas are defined as “potential”. Particularly, the method analyses piezometric level differences between shallow and deep aquifers to understand groundwater flow direction. The areas where groundwater flow is downward are delimited as potential recharge areas of deep aquifers (PRADAs). The method represents a qualitative approach to the identification of PRADAs, because it permits to narrow down large plain areas extension, highlighting where potentially recharge areas are located. Then PRADAs location and shape can be defined effectively, expanding data sets and furthering analyses (hydrogeological reconstruction, hydraulic connectivity, hydro-chemical and isotopic methods…) in the identified areas. The hydrogeological setting investigated by this method is representative of many anthropized and groundwater-demanding plains around the world that require to be protected. Thus, the method represents a suitable approach for PRADAs’ identification in such settings, especially in low-income countries, where resource availability for studies and analyses is scarce. This method was then applied to a plain area of Northwest Italy, and the locations and sizes of potential recharge, throughflow and discharge areas of deep aquifers were identified on a regional scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alfoldi L, Galfi J, Liebe P (1985) Heat flow anomalies caused by water circulation. J Geodyn 4(1–4):199–217

    Article  Google Scholar 

  • Anderson MP (2005) Heat as a ground water tracer. Gr Water 43:951–961

    Article  CAS  Google Scholar 

  • Biella GC, Polino R, De Franco R, Rossi PM, Clari PA, Corsi A, Gelati R (1997) The crustal structure of the western Po Plain: reconstruction from the integrated geological and seismic data. Terra Nova 9:28–31

    Article  Google Scholar 

  • Blash KW, Bryson JR (2007) Distinguishing sources of ground water recharge by using δ2H and δ18O. Gr Water 45:294–308

    Article  CAS  Google Scholar 

  • Bonsignore G, Bortolami GC, Elter G, Montrasio A, Petrucci F, Ragni U, Sacchi C, Zanella E (1969) Note illustrative della Carta geologica d’Italia alla scala 1:100,000, Fogli n. 56–57 Torino-Vercelli (Explanatory notes of the geological map of Italy at 1: 100,000 scale, Foglio n. 56–57 Turin-Vercelli). Servizio Geologico d’Italia, Poligrafica & Cartevalori, Ercolano (Napoli), pp 1–96

  • Bortolami GC, Carraro F, Friz C, Govi M, Malaroda R, Sacchi R (1966) Note illustrative della Carta Geologica d’Italia alla scala 1:100,000, Foglio n. 43 Biella (II ed.) (Explanatory notes of the geological map of Italy at 1: 100,000 scale, Foglio n. 43 Biella). Servizio Geologico d’Italia, Grafica editoriale cartotecnica, Roma

  • Bove A, Casaccio D, Destefanis E, De Luca DA, Lasagna M, Masciocco L, Ossella L, Tonussi M (2005) Idrogeologia della pianura piemontese (Hydrogeology of the Piedmont Po Plain). Mariogros Industrie Grafiche Spa, Torino

    Google Scholar 

  • Bucci A, Barbero D, Lasagna M, Forno MG, De Luca DA (2017) Shallow groundwater temperature in the Turin area (NW Italy): vertical distribution and anthropogenic effects. Environ Earth Sci 76:221. https://doi.org/10.1007/s12665-017-6546-4

    Article  Google Scholar 

  • Bugliosi EF (1999) The Midwestern basins and arches regional aquifer system in parts of Indiana, Ohio, Michigan, and Illinois: summary, vol 1423-A. US Geological Survey, Reston

    Google Scholar 

  • Castagna SED, De Luca DA, Lasagna M (2015a) Eutrophication of piedmont quarry lakes (north-western Italy): hydrogeological factors, evaluation of trophic levels and management strategies. J Environ Assess Policy Manag 17:4. https://doi.org/10.1142/S1464333215500362

    Article  Google Scholar 

  • Castagna SED, Dino GA, Lasagna M, De Luca DA (2015b) Environmental issues connected to the quarry lakes and chance to reuse fine materials deriving from aggregate treatments. In: Lollino G et al (eds) Engineering geology for society and territory—volume 5, urban geology, sustainable planning and landscape exploitation. Springer, Berlin, pp 71–74

    Google Scholar 

  • Caviglia C, De Luca DA, Lasagna M, Menegon A (2009) Evaluation of potential contamination hazard for deep aquifers through multiaquifer wells: the Northern Turin plain case study). Rend Online Soc Geol It 6:141–142

    Google Scholar 

  • Clemente P, Lasagna M, Dino GA, De Luca DA (2015) Comparison of different methods for detecting irrigation canals leakage. In: Lollino G (ed) Engineering geology for society and territory, vol 3, river basins, reservoir sedimentation and water resources. Springer, Berlin, pp 23–26

    Google Scholar 

  • D. Lgs. 152 (2006) Norme in materia ambientale. Suppl. Ord. n. 96 G.U. n. 88 del 14/4/2006

  • D. Lgs. 30 (2009) Attuazione della direttiva 2006/118/CE, relativa alla protezione delle acque sotterranee dall’inquinamento e dal deterioramento. G.U. n. 79 del 4/4/2009

  • De Luca DA, Falco F, Falco M, Lasagna M (2006a) Studio della variazione del livello piezometrico della falda superficiale nella pianura vercellese (Piemonte) (Study of piezometric level variation in the shallow aquifer of Vercelli Plain, Piedmont). Giornale di geologia applicata 2:387–392

    Google Scholar 

  • De Luca DA, Lasagna M, Casaccio D, Ossella L, Falco M (2006b) Le acque sotterranee della pianura vercellese—La falda superficiale (Groundwater of the Vercelli Plain—the shallow aquifer). Edizioni Saviolo, Vercelli

    Google Scholar 

  • De Luca DA, Lasagna M, Morelli di Popolo e Ticineto A (2007) Installation of a vertical slurry wall around an Italian quarry lake: complications arising and simulation of the effects on groundwater flow. Environ Geol 53:177–189. https://doi.org/10.1007/s00254-006-0632-3

    Article  CAS  Google Scholar 

  • De Luca DA, Lasagna M, Clemente P (2008) Installation of a vertical slurry wall around a large quarry lake in Piemonte: simulation of the effects on groundwater flow. Rendiconti online Soc Geol Italiana 3:306–307

    Google Scholar 

  • De Luca DA, Dell’Orto V, Destefanis E, Forno MG, Lasagna M, Masciocco L (2009) Assetto idrogeologico dei fontanili della pianura torinese (Hydrogeological structure of the fontanili in Turin plain). Rendiconti Online Soc Geol Italiana 6:199–200

    Google Scholar 

  • De Luca DA, Debernardi L, Falco M, Ferraris M, Gregorio L, Morelli A, Cuzzi Z, Liardo G (2010) Le acque sotterranee della Pianura Vercellese. Le falde profonde (Groundwater of the Vercelli Plain. The deep aquifers). Litocopy, Vercelli, p 96

    Google Scholar 

  • De Luca DA, Destefanis E, Forno MG, Lasagna M, Masciocco L (2014) The genesis and the hydrogeological features of the Turin Po Plain fontanili, typical lowland springs in Northern Italy. Bull Eng Geol Environ 73:409–427. https://doi.org/10.1007/s10064-013-0527-y

    Article  CAS  Google Scholar 

  • Debernardi L, De Luca DA, Lasagna M (2008) Correlation between nitrate concentration in groundwater and parameter affecting aquifer intrinsic vulnerability. Environ Geol 55:539–558. https://doi.org/10.1007/s00254-007-1006-1

    Article  CAS  Google Scholar 

  • Dogramaci SS, Herczeg AL, Schiff SL, Bone Y (2001) Controls on δ34S and δ18O of dissolved sulfate in aquifers of the Murray Basin, Australia and their use as indicators of flow processes. Appl Geochem 16:475–488

    Article  CAS  Google Scholar 

  • Domenico PA, Schwartz FW (1998) Physical and Chemical Hydrogeology, 2nd edn. Wiley, Hoboken

    Google Scholar 

  • European Commission (2000) Directive 2000/60/EC of the European parliament and of the council of 23 October 2000 establishing a framework for community action in the field of water policy. Off J Eur Commun L 327:1–72

    Google Scholar 

  • European Commission (2006) Directive 2006/118/EC of the European parliament and of the council of 12 December 2006 on the protection of groundwater against pollution and deterioration. Off J Eur Union L 372:19–31

    Google Scholar 

  • Forno MG, De Luca DA, Bonasera M, Bucci A, Gianotti F, Lasagna M, Lucchesi S, Pelizza S, Piana F, Taddia G (2018) Synthesis on the Turin subsoil stratigraphy and hydrogeology (NW Italy). Alp Mediterr Quat 31(2):1–24

    Google Scholar 

  • Freeze RA, Witherspoon PA (1966) Theoretical analysis of regional groundwater flow: 1. Analytical and numerical solutions to the mathematical model. Water Resour Res 2(4):641–656

    Article  Google Scholar 

  • Freeze RA, Witherspoon PA (1967) Theoretical analysis of regional groundwater flow: 2. Effect of water table configuration and subsurface permeability variation. Water Resour Res 3(2):623–634

    Article  Google Scholar 

  • Freeze RA, Witherspoon PA (1968) Theoretical analysis of regional groundwater flow: 3. Quantitative interpretations. Water Resou Res 4(3):581–590

    Article  Google Scholar 

  • Gelati R, Gnaccolini M (1982) Evoluzione tettonico-sedimentaria della zona limite tra Alpi ed Appennino tra l’inizio dell’Oligocene ed il Miocene medio. Mem Soc Geol It. 24:183–191

    Google Scholar 

  • Gianotti F, Forno MG, Ivy-Ochs S, Monegato G, Pini R, Ravazzi C (2015) Stratigraphy of the ivrea morainic amphitheatre (NW Italy): an updated synthesis. Alp Mediterr Quat 28(1):29–58

    Google Scholar 

  • Gisolo A, Barbero D, Bucci A, Forno MG, Lasagna M, De Luca DA (2015) The use of temperature monitoring to define the groundwater flow paths. In: proceedings of 42nd IAH congress, AQUA 2015, Session S8.10, Roma 13-18 September 2015

  • Ingram RGS, Hiscock KM, Dennis PF (2007) Noble gas excess air applied to distinguish groundwater recharge conditions. Environ Sci Technol 41(6):1949–1955

    Article  CAS  Google Scholar 

  • Kovalevsky VS, Vrba J (2004) General protection of groundwater. In: Kovalevsky VS, Kruseman GP, Rushton KR (eds) Groundwater studies: an international guide for hydrogeological investigations. Series on Groundwater, vol 3. IHP-VI, Paris

    Google Scholar 

  • Lasagna M, De Luca DA (2019) Evaluation of sources and fate of nitrates in the western Po Plain groundwater (Italy) using nitrogen and boron isotopes. Environ Sci Pollut Res 26:2089–2104. https://doi.org/10.1007/s11356-017-0792-6

    Article  CAS  Google Scholar 

  • Lasagna M, De Luca DA (2016) The use of multilevel sampling techniques for determining shallow aquifer nitrate profiles. Environ Sci Pollut Res 23:20431–20448. https://doi.org/10.1007/s11356-016-7264-2

    Article  CAS  Google Scholar 

  • Lasagna M, Franchino E, De Luca DA (2015) Areal and vertical distribution of nitrate concentration in Piedmont plain aquifers (North-western Italy). In: Lollino G (ed) Engineering Geology for society and territory—volume 3, river basins, reservoir sedimentation and water resources. Springer, Berlin, pp 389–392. https://doi.org/10.1007/978-3-319-09054-2_81

    Chapter  Google Scholar 

  • Lasagna M, De Luca DA, Franchino E (2016a) Nitrate contamination of groundwater in the western Po Plain (Italy): the effects of groundwater and surface water interactions. Environ Earth Sci 75:240. https://doi.org/10.1007/s12665-015-5039-6

    Article  CAS  Google Scholar 

  • Lasagna M, De Luca DA, Franchino E (2016b) The role of physical and biological processes in aquifers and their importance on groundwater vulnerability to nitrate pollution. Environ Earth Sci 75:961. https://doi.org/10.1007/s12665-016-5768-1

    Article  CAS  Google Scholar 

  • Lasagna M, De Luca DA, Franchino E (2018) Intrinsic groundwater vulnerability assessment: issues, comparison of different methodologies and correlation with nitrate concentrations in NW Italy. Environ Earth Sci 77:277. https://doi.org/10.1007/s12665-018-7452-0

    Article  CAS  Google Scholar 

  • Manning AH, Solomon DK, Sheldon AL (2005) Applications of a total dissolved gas pressure probe in ground water studies. Gr Water 41(4):440–448

    Article  Google Scholar 

  • Pasquale V, Verdoya M, Chiozzi P (2011) Groundwater flow analysis using different geothermal constraints: the case study of Acqui Terme area, northwestern Italy. J Volcanol Geoth Res 199:38–46

    Article  CAS  Google Scholar 

  • Pilla G, Sacchi E, Zuppi G, Braga G, Ciancetti G (2006) Hydrochemistry and isotope geochemistry as tools for groundwater hydrodynamic investigation in multilayer aquifers: a case study from Lomellina, Po plain, South-Western Lombardy, Italy. Hydrogeol J 14:795–808

    Article  CAS  Google Scholar 

  • Regione Emilia-Romagna, ENI-AGIP (1998) Riserve idriche sotterranee della Regione Emilia-Romagna. In: Di Dio G (ed) Groundwater resources of the Emilia-Romagna Region. S.EL.CA, Firenze

    Google Scholar 

  • Regione Lombardia, ENI-AGIP (2002) Geologia degli Acquiferi Padani della Regione Lombardia. In: Carcano C, Piccin A (eds) Geology of the Po Plain aquifers of the Lombardy Region. S.EL.CA, Firenze

    Google Scholar 

  • Regione Piemonte (1996) Legge regionale 30 aprile 1996, no. 22. Ricerca, uso e tutela delle acque sotterranee. Bollettino Ufficiale della Regione Piemonte n. 19, 8/05/1996

  • Regione Piemonte (2003) Legge regionale 7 aprile 2003, no. 6. Disposizioni in materia di autorizzazione agli scarichi delle acque reflue domestiche e modifiche alla legge regionale 30 aprile 1996, n. 22 (Ricerca, uso e tutela delle acque sotterranee). Bollettino Ufficiale della Regione Piemonte n.15, 10/04/2003

  • Scholl MA, Ingebritsen SE, Janik CJ, Kauahikaua JP (1996) Use of precipitation and groundwater isotopes to interpret regional hydrology on a tropical volcanic island: Kilauea volcano area. Hawaii Water Resour Res 32:3525–3537

    Article  CAS  Google Scholar 

  • Sukhija S, Reddy DV, Nagabhushanam P, Syed H, Giri VY, Patil DJ (1996) Environmental and injected tracers methodology to estimate direct precipitation recharge to a confined aquifer. J Hydrol 177:77–97

    Article  CAS  Google Scholar 

  • Taniguchi M (1993) Evaluation of vertical groundwater fluxes and thermal properties of aquifers based on transient temperature-depth profiles. Water Resour Res 29:2021–2026

    Article  Google Scholar 

  • Toth JA (1962) Theory of groundwater motion in small drainage basins in Central Alberta, Canada. J Geophys Res 57:4375–4387

    Article  Google Scholar 

  • Toth JA (1963) A theoretical analysis of ground-water flow in small drainage basins. J Geophys Res 68(16):4795–4811

    Article  Google Scholar 

  • Toth JA (1970) Conceptual model of the groundwater regime and the hydrogeological environment. J Hydrol 10:164–176

    Article  Google Scholar 

  • Toth JA (1971) Groundwater discharge: a common generation of diverse geological and morphological phenomena. Bull Int Assoc Sci Hydrol, XVI, pp 9–24

    Google Scholar 

  • Toth JA (1972) Properties and manifestations of regional groundwater movement. In: proceeding of 24th international geological congress, Montreal, Sect. 11, 153–163

  • Zhou Y, Li W (2011) A review of regional groundwater flow modeling. Geosci Front 2(2):205214

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Provincia di Vercelli and ATO n.2 (Autorità d’Ambito Biellese, Vercellese, Casalese) for the financial support of the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Lasagna.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Luca, D.A., Lasagna, M., Gisolo, A. et al. Potential recharge areas of deep aquifers: an application to the Vercelli–Biella Plain (NW Italy). Rend. Fis. Acc. Lincei 30, 137–153 (2019). https://doi.org/10.1007/s12210-019-00782-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-019-00782-z

Keywords

Navigation