Phenomenology of gamma-ray emitting binaries

Abstract

Gamma-ray emitting binaries (GREBs) are complex systems. Its study became in the last years a major endeavour for the high-energy astrophysics community, both from an observational and a theoretical perspective. Whereas the accumulation of observation time for most Galactic gamma-ray sources is typically leading to highly accurate descriptions of their steady phenomenology, GREBs keep providing “exceptions to the rule” either through long-term monitoring of known systems or in the discovery of new sources of this class. Moreover, many GREBs have been identified as powerful radio, optical and X-ray emitters, and may significantly contribute as well to the Galactic cosmic-ray sea. Their understanding implies, therefore, solving a puzzle in a broad-band and multi-messenger context. In these proceedings we will summarise our current understanding of GREBs, emphasising the most relevant observational results and reviewing a number of controversial properties.

This is a preview of subscription content, log in to check access.

Notes

  1. 1.

    Phase-resolved spectroscopy can provide more extreme values for \(\Gamma _{\gamma }\), e.g. in LS 5039 \(\Gamma _{\gamma } = 1.8\) when the compact object is in its inferior conjunction, whereas \(\Gamma _{\gamma }\) = 3.1 during superior conjunction. Note that an exponential cutoff power law model best fits LS 5039 during its inferior conjunction.

References

  1. Abdo AA, Ackermann M, Ajello M (2010a) Gamma-ray emission concurrent with the nova in the symbiotic binary V407 Cygni. Science 329:817

    CAS  Google Scholar 

  2. Abdo AA, Ackermann M, Ajello M (2010b) Fermi large area telescope observation of a gamma-ray source at the position of Eta Carinae. ApJ 723:649

    Google Scholar 

  3. Ackermann M, Ajello M, Albert A et al (2014) Fermi establishes classical novae as a distinct class of gamma-ray sources. Science 345:554

    Google Scholar 

  4. Aharonian F, Akhperjanian AG, Aye K-M et al (2005a) Discovery of the binary pulsar PSR B1259–63 in very-high-energy gamma rays around periastron with HESS. A&A 442:1

    CAS  Google Scholar 

  5. Aharonian F, Akhperjanian AG, Aye K-M (2005b) Discovery of very high energy gamma rays associated with an X-ray binary. Science 309:746

    CAS  Google Scholar 

  6. Aharonian FA, Akhperjanian AG, Bazer-Bachi AR et al (2007) Discovery of a point-like very-high-energy \(\gamma \)-ray source in Monoceros. A&A 469:L1

    CAS  Google Scholar 

  7. Ahnen ML, Ansoldi S, Antonelli LA et al (2015) Very high-energy \(\gamma \)-ray observations of novae and dwarf novae with the MAGIC telescopes. A&A 582:A67

    Google Scholar 

  8. Albert J, Aliu E, Anderhub H (2006) Variable very-high-energy gamma-ray emission from the microquasar LS I +61 303. Science 312:1771

    CAS  Google Scholar 

  9. Albert J, Aliu E, Anderhub H (2007) Detection of gamma-ray emission from the Eta-Carinae region. ApJL 665:L51

    CAS  Google Scholar 

  10. Aliu E, Archambault S, Arlen T (2012) VERITAS observations of the Nova in V407 Cygni. ApJ 754:77

    Google Scholar 

  11. Archambault S, Beilicke M, Benbow W (2013) VERITAS observations of the microquasar Cygnus X-3. ApJ 779:150

    Google Scholar 

  12. Archibald AM, Stairs IH, Ransom SM (2009) A radio pulsar/X-ray binary link. Science 324:1411

    CAS  Google Scholar 

  13. Atoyan AM, Aharonian FA (1999) Modelling of the non-thermal flares in the Galactic microquasar GRS 1915+105. MNRAS 302:253

    Google Scholar 

  14. Benaglia P, Romero GE (2003) Gamma-ray emission from Wolf-Rayet binaries. A&A 399:1121

    Google Scholar 

  15. Blandford RD, Znajek RL (1977) Electromagnetic extraction of energy from Kerr black holes. MNRAS 179:433

    Google Scholar 

  16. Blandford RD, Payne DG (1982) Hydromagnetic flows from accretion discs and the production of radio jets. MNRAS 199:883

    Google Scholar 

  17. Bogdanov S, Grindlay JE, van den Berg M (2005) An X-ray variable millisecond pulsar in the globular cluster 47 Tucanae: Closing the link to low-mass x-ray binaries. ApJ 630:1029

    CAS  Google Scholar 

  18. Bogovalov SV, Aharonian FA (2000) Very-high-energy gamma radiation associated with the unshocked wind of the Crab pulsar. MNRAS 313:504

    CAS  Google Scholar 

  19. Bordas P, Bosch-Ramon V, Paredes JM, Perucho M (2009) Non-thermal emission from microquasar/ISM interaction. A&A 497:325

    CAS  Google Scholar 

  20. Bordas P, Yang R, Kafexhiu E, Aharonian F (2015) Detection of persistent gamma-ray emission toward SS433/W50. ApJL 807:L8

    Google Scholar 

  21. Bosch-Ramon V, Aharonian FA, Paredes JM (2005) Electromagnetic radiation initiated by hadronic jets from microquasars in the ISM. A&A 432:609

    CAS  Google Scholar 

  22. Bosch-Ramon V, Romero GE, Paredes JM (2006) A broadband leptonic model for gamma-ray emitting microquasars. A&A 447:263

    CAS  Google Scholar 

  23. Chardin G, Gerbier G (1989) Cygnus X-3 at high energies—a critical analysis of observational results. A&A 210:52

    CAS  Google Scholar 

  24. Cheung CC, Glanzman T, Hill AB (2012a) Fermi LAT Detection of a New Galactic Bulge Gamma-ray Transient in the Scorpius Region: Fermi J1750-3243, and its possible association with Nova Sco 2012. The Astron Telegr 4284

  25. Cheung CC, Hays E, Venters T, Donato D, Corbet RHD (2012b) Fermi LAT detection of a new gamma-ray transient in the galactic plane: Fermi J0639+0548. Astron Telegr 4224

  26. Cheung CC, Jean P, Shore SN (2013) Fermi-LAT observations of Nova V1369 Centauri 2013 brightening in gamma rays. Astron Telegr, 5653

  27. Cheung CC, Jean P, Shore SN (2015) Further Fermi-LAT gamma-ray observations of Nova Sagittarii 2015 No. 2. Astron Telegr 7315

  28. Cheung CC, Jean P, Shore SN, Fermi Large Area Telescope Collaboration (2016a) Fermi-LAT gamma-ray observations of Nova Lupus 2016 (ASASSN-16kt). The Astronomer’s Telegram, 9594

  29. Cheung CC, Jean P, Shore SN, Fermi Large Area Telescope Collaboration. (2016b) Fermi-LAT Gamma-ray Observations of Nova Lupus 2016 (ASASSN-16kt). The Astronomer’s Telegram, 9594

  30. Cheung CC, Jean P, Shore SN (2016c) Fermi-LAT gamma-ray detections of classical Novae V1369 Centauri 2013 and V5668 Sagittarii 2015. ApJ 826:142

    Google Scholar 

  31. Chomiuk L, Linford JD, Yang J et al (2014) Binary orbits as the driver of \(\gamma \)-ray emission and mass ejection in classical novae. Nature 514:339

    CAS  Google Scholar 

  32. Collaboration Fermi LAT, Abdo AA, Ackermann M (2009) Modulated high-energy gamma-ray emission from the microquasar Cygnus X-3. Science 326:1512

    Google Scholar 

  33. Collaboration HESS, Abramowski A, Acero F et al (2012) HESS observations of the Carina nebula and its enigmatic colliding wind binary Eta Carinae. MNRAS 424:128

    Google Scholar 

  34. Corbel S, Fender RP, Tzioumis AK (2002) Large-scale, decelerating, relativistic X-ray Jets from the Microquasar XTE J1550–564. Science 298:196

    CAS  Google Scholar 

  35. Corbet RHD, Cheung CC, Kerr M et al (2011) 1FGL J1018.6-5856: a New Gamma-ray Binary. The Astronomer’s Telegram, 3221

  36. Corbet RHD, Chomiuk L, Coe MJ (2016) A luminous gamma-ray binary in the large magellanic cloud. ApJ 829:105

    Google Scholar 

  37. De Becker M (2007) Non-thermal emission processes in massive binaries. Astron Astrophys Rev 14:171

    Google Scholar 

  38. de Martino D, Falanga M, Bonnet-Bidaud J-M et al (2010) The intriguing nature of the high-energy gamma ray source XSS J12270–4859. A&A 515:A25

    Google Scholar 

  39. Dermer CD, Böttcher M (2006) Gamma rays from compton scattering in the jets of microquasars: application to LS 5039. ApJ 643:1081

    Google Scholar 

  40. Díaz Trigo M, Miller-Jones JCA, Migliari S, Broderick JW, Tzioumis T (2013) Baryons in the relativistic jets of the stellar-mass black-hole candidate 4U1630-47. Nature 504:260

    Google Scholar 

  41. Dubus G (2006) Gamma-ray binaries: pulsars in disguise? A&A 456:801

    Google Scholar 

  42. Dubus G (2013) Gamma-ray binaries and related systems. Astron Astrophys Rev 21:64

    Google Scholar 

  43. Eger P, Laffon H, Bordas P et al (2016) Discovery of a variable X-ray counterpart to HESS J1832–093: a new gamma-ray binary? MNRAS 457:1753

    CAS  Google Scholar 

  44. Farnier C, Walter R, Leyder J-C (2011) \(\eta \) Carinae: a very large hadron collider. A&A 526:A57

    Google Scholar 

  45. Franckowiak A, Jean P, Wood M, Cheung CC, Buson S (2018) Search for gamma-ray emission from Galactic novae with the Fermi -LAT. A&A 609:A120

    Google Scholar 

  46. Hadasch D, Torres DF, Tanaka T (2012) Long-term monitoring of the high-energy \(\gamma \)-Ray emission from LS I +61 303 and LS 5039. ApJ 749:54

    Google Scholar 

  47. Hays E, Cheung T, Ciprini S (2013) Detection of gamma rays from Nova Delphini 2013. The Astron Telegr 5302

  48. Heinz S, Sunyaev R (2002) Cosmic rays from microquasars: a narrow component to the CR spectrum? A&A 390:751

    Google Scholar 

  49. HESS Collaboration, Abramowski A, Acero F, et al. (2015) Discovery of the VHE gamma-ray source HESS J1832-093 in the vicinity of SNR G22.7-0.2. MNRAS, 446:1163

  50. HESS Collaboration, Abdalla H, Abramowski A, et al (2018) A search for very high-energy flares from the microquasars GRS 1915+105, Circinus X-1, and V4641 Sgr using contemporaneous H.E.S.S. and RXTE observations. A&A, 612:A10

  51. Kennel CF, Coroniti FV (1984) Confinement of the Crab pulsar’s wind by its supernova remnant. ApJ 283:694

    CAS  Google Scholar 

  52. Khangulyan D, Aharonian FA, Bogovalov SV, Ribó M (2012) Post-periastron gamma-ray flare from PSR B1259–63/LS 2883 as a result of comptonization of the cold pulsar wind. ApJL 752:L17

    Google Scholar 

  53. Kong SW, Cheng KS, Huang YF (2012) Modeling the multiwavelength light curves of PSR B1259–63/LS 2883. II. The effects of anisotropic pulsar wind and doppler boosting. ApJ 753:127

    Google Scholar 

  54. Leser E, Ohm S, Füßling M et al (2017) First Results of Eta Car Observations with H.E.S.S.II. arXiv: 1708.01033

  55. Leyder J-C, Walter R, Rauw G (2008) Hard X-ray emission from \(\eta \) Carinae. A&A 477:L29

    CAS  Google Scholar 

  56. Li K-L, Chomiuk L (2016) Fermi-LAT detection of the Galactic nova TCP J18102829-2729590. Astron Telegr 9699

  57. Li K-L, Chomiuk L, Strader J (2016) Fermi-LAT detection of a very bright gamma-ray onset from the Galactic Nova ASASSN-16ma. Astron Telegr 9736

  58. Loh A, Corbel S, Dubus G et al (2016) High-energy gamma-ray observations of the accreting black hole V404 Cygni during its 2015 June outburst. MNRAS 462:L111

    CAS  Google Scholar 

  59. Lucarelli F, Verrecchia F, Striani E et al (2010) AGILE detection of the new unidentified gamma-ray source AGL J2241+4454. Astrono Telegr 2761

  60. Lyne AG, Stappers BW, Keith MJ et al (2015) The binary nature of PSR J2032+4127. MNRAS 451:581

    CAS  Google Scholar 

  61. Malyshev D, Zdziarski AA, Chernyakova M (2013) High-energy gamma-ray emission from Cyg X-1 measured by Fermi and its theoretical implications. MNRAS 434:2380

    Google Scholar 

  62. Markoff S, Falcke H, Fender R (2001) A jet model for the broadband spectrum of XTE J1118+480. Synchrotron emission from radio to X-rays in the Low/Hard spectral state. A&A 372:L25

    CAS  Google Scholar 

  63. Martin P, Dubus G (2013) Particle acceleration and non-thermal emission during the V407 Cygni nova outburst. A&A 551:A37

    Google Scholar 

  64. Martin P, Dubus G, Jean P, Tatischeff V, Dosne C (2018) Gamma-ray emission from internal shocks in novae. A&A 612:A38

    Google Scholar 

  65. Massi M, Jaron F (2013) Long-term periodicity in LS I +61\({\deg }\)303 as beat frequency between orbital and precessional rate. A&A 554:A105

    Google Scholar 

  66. Metzger BD, Hascoët R, Vurm I (2014) Shocks in nova outflows - I. Thermal emission. MNRAS 442:713

    Google Scholar 

  67. Metzger BD, Caprioli D, Vurm I et al (2016) Novae as Tevatrons: prospects for CTA and IceCube. MNRAS 457:1786

    CAS  Google Scholar 

  68. Migliari S, Fender R, Méndez M (2002) Iron emission lines from extended X-ray Jets in SS 433: reheating of atomic nuclei. Science 297:1673

    CAS  Google Scholar 

  69. Mirabel IF (2006) Very energetic gamma-rays from microquasars and binary pulsars. Science 312:1759

    CAS  Google Scholar 

  70. Mirabel IF, Rodríguez LF (1994) A superluminal source in the Galaxy. Nature 371:46

    Google Scholar 

  71. Mirabel IF, Rodriguez LF, Cordier B, Paul J, Lebrun F (1992) A double-sided radio jet from the compact Galactic Centre annihilator 1E1740.7-2942. Nature 358:215

    Google Scholar 

  72. Mori K, Gotthelf EV, Hailey CJ (2017) NuSTAR hard X-ray observation of the gamma-ray binary candidate HESS J1832–093. ApJ 848:80

    Google Scholar 

  73. Ohm S, Hinton JA, Domainko W (2010) Particle acceleration in the expanding blast wave of \(\eta \) Carina’s Great Eruption of 1843. ApJL 718:L161

    Google Scholar 

  74. Paredes JM (2011) Gamma-ray binaries: microquasars and binary systems with pulsar. arXiv:1101.4843

  75. Pshirkov MS (2016) The Fermi-LAT view of the colliding wind binaries. MNRAS 457:L99

    CAS  Google Scholar 

  76. Reitberger K, Reimer O, Reimer A et al (2012) Gamma-ray follow-up studies on \(\eta \) Carinae. A&A 544:A98

    Google Scholar 

  77. Romero GE, Torres DF, Kaufman Bernadó MM, Mirabel IF (2003) Hadronic gamma-ray emission from windy microquasars. A&A 410:L1

    Google Scholar 

  78. Romero GE, Okazaki AT, Orellana M, Owocki SP (2007) Accretion vs. colliding wind models for the gamma-ray binary LS I +61 303: an assessment. A&A 474:15

    CAS  Google Scholar 

  79. Sabatini S, Tavani M, Coppi P (2013) Gamma-ray observations of Cygnus X-1 above 100 MeV in the hard and soft states. ApJ 766:83

    Google Scholar 

  80. Saito TY, Zanin R, Bordas P, et al (2009) Microquasar observations with the MAGIC telescope. arXiv:0907.1017

  81. Tatischeff V, Hernanz M (2007) Evidence for nonlinear diffusive shock acceleration of cosmic rays in the 2006 outburst of the recurrent Nova RS Ophiuchi. ApJL 663:L101

    CAS  Google Scholar 

  82. Tavani M, Bulgarelli A, Piano G et al (2009) Extreme particle acceleration in the microquasar CygnusX-3. Nature 462:620

    CAS  Google Scholar 

  83. Tavani M, Sabatini S, Pian E (2009) Detection of gamma-ray emission from the Eta-Carinae region. ApJL 698:L142

    CAS  Google Scholar 

  84. Werner M, Reimer O, Reimer A, Egberts K (2013) Fermi-LAT upper limits on gamma-ray emission from colliding wind binaries. A&A 555:A102

    Google Scholar 

  85. Wu EMH, Takata J, Cheng KS et al (2012) Orbital-phase-dependent \(\gamma \)-Ray Emissions from the Black Widow Pulsar. ApJ 761:181

    Google Scholar 

  86. Zabalza V, Bosch-Ramon V, Aharonian F, Khangulyan D (2013) Unraveling the high-energy emission components of gamma-ray binaries. A&A 551:A17

    Google Scholar 

  87. Zanin R, Fernández-Barral A, de Oña Wilhelmi E et al (2016) Gamma rays detected from Cygnus X-1 with likely jet origin. A&A 596:A55

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Josep Maria Paredes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is the peer-reviewed version of a contribution selected among those presented at the Conference on Gamma-Ray Astrophysics with the AGILE Satellite held at Accademia Nazionale dei Lincei and Agenzia Spaziale Italiana, Rome on December 11–13, 2017. TC: A decade of AGILE.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Paredes, J.M., Bordas, P. Phenomenology of gamma-ray emitting binaries. Rend. Fis. Acc. Lincei 30, 107–113 (2019). https://doi.org/10.1007/s12210-019-00769-w

Download citation

Keywords

  • Gamma rays: observations
  • Gamma rays: binaries
  • Stars: massive
  • Novae
  • Pulsars: general