Energetic radiation from thunderclouds: extended particle fluxes directed to Earth’s surface

Abstract

After introducing spectrometers with the energy threshold of 0.3 MeV the pattern of the thunderstorm ground enhancements (TGEs) observed on Aragats dramatically changed demonstrating multi-hour radiation. In the paper, we analyze comprehensive observations made on different time scales and energy ranges. A new model of TGE is discussed explaining much larger time of particle fluxes from clouds.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Alexeenko VV, Khaerdinov NS, Lidvansky AS et al (2002) Transient variations of secondary cosmic rays due to atmospheric electric field and evidence for pre-lightning particle acceleration. Phys Lett A 301:299–306

    CAS  Article  Google Scholar 

  2. Babich LP (2017a) Radiocarbon production by thunderstorms. Geophys Res Lett 44:11191–11200

    Article  Google Scholar 

  3. Babich LP (2017b) Thunderous nuclear reactions. Nature 551:443–444

    CAS  Article  Google Scholar 

  4. Babich LP, Donskoy EN, Kutsyk IM et al (2001) Comparison of relativistic runaway electron avalanche rates obtained from monte carlo simulations and from kinetic equation solution. IEEE Trans Plasma Sci 29:430–438

    Article  Google Scholar 

  5. Babich LP, Donskoy EN, Il’kaev RI, Kutsyk IM, Roussel-Dupre ́ RA (2004) Fundamental parameters of a relativistic runaway electron avalanche in air. Plasma Phys Rep 30:616–624

    CAS  Article  Google Scholar 

  6. Briggs MS, Connaughton V, Wilson-Hodge C et al (2011) Electron-positron beams from terrestrial lightning observed with Fermi GBM. Geophys Res Lett 38:L02808

    Article  Google Scholar 

  7. Chilingarian A, Daryan A, Arakelyan K et al (2010) Ground-based observations of thunderstorm-correlated fluxes of high-energy electrons, gamma rays, and neutrons. Phys Rev D 82:043009

    Article  Google Scholar 

  8. Chilingarian A, Hovsepyan G, Hovhannisyan A (2011) Particle bursts from thunderclouds: natural particle accelerators above our heads. Phys Rev D Part Fields 83(6):062001

    Article  Google Scholar 

  9. Chilingarian A, Bostanjyan N, Vanyan L (2012) Neutron bursts associated with thunderstorms. Phys Rev D Part Fields 85(8):085017

    Article  Google Scholar 

  10. Chilingarian A, Hovsepyan G, Kozliner L (2013a) Thunderstorm ground enhancements: gamma ray differential energy spectra. Phys Rev D Part Fields 88:073001

    Article  Google Scholar 

  11. Chilingarian A, Bostanjyan N, Karapetyan T (2013b) On the possibility of location of radiation-emitting region in thundercloud. J Phys Conf Ser 409:012217

    Article  Google Scholar 

  12. Chilingarian A, Hovsepyan G, Mantasakanyan E (2016) Mount Aragats as a stable electron accelerator for atmospheric high-energy physics research. Phys Rev D Part Fields 93(5):052006

    Article  Google Scholar 

  13. Chilingarian A, Khanikyants Y, Mareev E et al (2017a) Types of lightning discharges that abruptly terminate enhanced fluxes of energetic radiation and particles observed at ground level. J Geophys Res Atmos 122:7582–7599

    Article  Google Scholar 

  14. Chilingarian A, Chilingaryan S, Karapetyan T et al (2017b) On the initiation of lightning in thunderclouds. Sci Rep 7(1):1371. https://doi.org/10.1038/s41598-017-01288-0(2017)

    Article  Google Scholar 

  15. Chilingarian A, Hovsepyan G, Mailyan B (2017c) In situ measurements of the runaway breakdown (RB) on Aragats mountain. Nucl Inst Methods Phys Res A 874:19–27

    CAS  Article  Google Scholar 

  16. Dwyer JR (2003) A fundamental limit on electric fields in air. Geophys Res Lett 30(20):2055

    Article  Google Scholar 

  17. Eack KB, Beasley WH, Rust WD et al (1996) Initial results from simultaneous observations of X rays and electric fields in a thunderstorm. J Geophys Res 101:29637–29640

    Article  Google Scholar 

  18. Enoto T, Wada Y, Furuta Y et al (2017) Photonuclear reactions triggered by lightning discharge. Nature (London) 551:481

    CAS  Article  Google Scholar 

  19. Fishman GJ, Bhat PN, Mallozzi V et al (1994) Discovery of intense gamma ray flashes of atmospheric origin. Science 264:1313

    CAS  Article  Google Scholar 

  20. Gurevich AV, Milikh GM, Roussel-Dupre R (1992) Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm. Phys Lett A 165:463

    CAS  Article  Google Scholar 

  21. Gurevich AV et al (2012) Strong flux of low-energy neutrons produced by thunderstorms. Phys Rev Lett 108:125001

    CAS  Article  Google Scholar 

  22. Kelley NA, Smith DM, Dwyer JR et al (2015) Relativistic electron avalanches as a thunderstorm discharge competing with lightning. Nat Commun 6:7845

    CAS  Article  Google Scholar 

  23. Kochkin P, van Deursen PJ, Marisaldi M et al (2017) In-flight observation of gamma ray glows by ILDAS. JGR, Atmos 122:12801–12811

    Google Scholar 

  24. Kudela K, Chum J, Kollárik M, Langer R, Strhárský I, Baše J (2017) Correlations between secondary cosmic ray rates and strong electric fields at Lomnický štít. J Geophys Res Atmos 122(10):70010–70710

    Google Scholar 

  25. Kuroda Y, Oguri S, Kato Y et al (2016) Observation of gamma ray bursts at ground level under the thunderclouds. Phys Lett B 758:286–291

    CAS  Article  Google Scholar 

  26. Mailyan BG, Briggs MS, Cramer ES et al (2016) The spectroscopy of individual terrestrial gamma-ray flashes: constraining the source properties. JGR Sapce Phys 121:11346–11363

    Google Scholar 

  27. McCarthy MP, Parks GK (1985) Further observations of X-rays inside thunderstorms. Geophys Res Lett 97:5857–5864. https://doi.org/10.1029/GL012i006p00393

    Article  Google Scholar 

  28. Tavani M et al (2011) (AGILE team), terrestrial gamma-ray flashes as powerful particle accelerators. Phys Rev Lett 106:018501

    CAS  Article  Google Scholar 

  29. Torii T, Sugita T, Kamogawa M et al (2011) Migrating source of energetic radiation generated by thunderstorm activity. Geophys Res Lett 38:L24801

    Article  Google Scholar 

  30. Tsuchiya H, Hibino K, Kawata K et al (2012) Observation of thundercloud-related gamma rays and neutrons in Tibet. Phys Rev D 85:092006

    Article  Google Scholar 

  31. Tsuchiya H, Enoto T, Iwata K et al (2013) Hardening and termination of long-duration g rays detected prior to lightning. Phys Rev Lett 111:015001

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The author thanks the staff of the Aragats Space Environmental Center for the uninterruptible operation of Aragats research station facilities. The data for this paper are available via the multivariate visualization software ADEI on the WEB page of the Cosmic Ray Division (CRD) of the Yerevan Physics Institute, http://adei.crd.yerphi.am/adei. A.C. appreciates the support by Russian Science Foundation grant (project No. 17-12-01,439).

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Chilingarian.

Ethics declarations

Conflict of interest

The author declares that he has no competing financial and non-financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chilingarian, A. Energetic radiation from thunderclouds: extended particle fluxes directed to Earth’s surface. Rend. Fis. Acc. Lincei 30, 191–197 (2019). https://doi.org/10.1007/s12210-018-0755-y

Download citation

Keywords

  • Electron acceleration in atmosphere
  • Thunderstorm ground enhancements
  • High-energy physics in atmosphere