Rendiconti Lincei. Scienze Fisiche e Naturali

, Volume 29, Issue 3, pp 623–630 | Cite as

Nitronyl nitroxide radicals at the interface: a hybrid architecture for spintronics

  • Lorenzo Poggini
  • Giuseppe Cucinotta
  • Lorenzo Sorace
  • Andrea Caneschi
  • Dante Gatteschi
  • Roberta Sessoli
  • Matteo ManniniEmail author
The Quantum World of Molecules


Cross-fertilization between molecular magnetism and organic spintronics is leading to the development of concepts based on the use of molecules as active elements to influence spin-related transport processes. The research on hybrid devices, where the magnetic molecules in contact with the electrodes influence the spin and charge injection and transport, is moving its first steps but is expected to quickly expand the technological potential of molecular spintronics and quantum computing. New exciting possibilities, linked to the individual properties of these molecular units and to their interaction with novel substrates, are getting disclosed. The chemical functionalization of these molecules is the tool which allows to tune their electronic and magnetic properties and to directly create these hybrid architectures. However, the coupling of molecules with the spin transport phenomena is far from being trivial. First, the stability of molecules in the device environment must be tested and, subsequently, the organization of molecules in the desired architectures must be mastered permitting a careful control of the interactions between inorganic substrates and molecular layers. Here we summarize how this research activity can be developed in the case of one of the simplest magnetic molecules, an organic radical. We will start from an innocent surface, such as gold, to move then toward a real-device environment. We evidence how these efforts can result in a surface-specific molecular-based method to influence the spin injection and transport phenomena, paving the way for developing new devices in which a fine-tuning of magnetic features is required.

Graphical abstract


Organic radicals Nitronyl nitroxide Nanostructured layers Molecular magnetism Molecular spintronics 



Authors acknowledge the many collaborators that have made possible the research here briefly summarized. In particular, we want to thank the groups of Dr. A. Dediu (ISMN-CNR, Bologna), Dr. S. Picozzi (SPIN-CNR, L’Aquila), Prof. G. Maruccio (University of Salento), Prof. A. Magnani (University of Siena) and the Italian MIUR that funded part of the activities we described here within the FIRB project RBAP117RWN.


  1. Arbuzov BA, Zobova NN (1982) Addition of aliphatic and aromatic acyl isocyanates to unsaturated compounds. Synth (Stuttg) 1982:433–450. CrossRefGoogle Scholar
  2. Aronoff YG, Chen B, Lu G et al (1997) Stabilization of self-assembled monolayers of carboxylic acids on native oxides of metals. J Am Chem Soc 7863:1995–1998Google Scholar
  3. Atzori M, Tesi L, Morra E et al (2016) Room-temperature quantum coherence and rabi oscillations in vanadyl phthalocyanine: toward multifunctional molecular spin qubits. J Am Chem Soc 138:2154–2157. CrossRefGoogle Scholar
  4. Barraud C, Seneor P, Mattana R et al (2010) Unravelling the role of the interface for spin injection into organic semiconductors. Nat Phys 6:615–620. CrossRefGoogle Scholar
  5. Bernien M, Wiedemann D, Hermanns CF et al (2012) Spin crossover in a vacuum-deposited submonolayer of a molecular iron(II) complex. J Phys Chem Lett 3:3431–3434. CrossRefGoogle Scholar
  6. Burgess JAJ, Malavolti L, Lanzilotto V et al (2015) Magnetic fingerprint of individual Fe4 molecular magnets under compression by a scanning tunnelling microscope. Nat Commun 6:8216. CrossRefGoogle Scholar
  7. Caneschi A, Gatteschi D, le Lirzin A (1994) Crystal structure and magnetic properties of a new ferrimagnetic chain containing manganese(II) and a nitronyl-nitroxide radical. Magnetic ordering in Mn(hfac)2NITR compounds. J Mater Chem 4:319–326CrossRefGoogle Scholar
  8. Caneschi A, Ferraro F, Gatteschi D et al (1995) Ferromagnetic order in the sulfur-containing nitronyl nitroxide radical, 2-(4-thiomethyl)phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, NIT(SMe)Ph. Adv Mater (Weinh, Ger) 7:476–478CrossRefGoogle Scholar
  9. Cinchetti M, Dediu VA, Hueso LE (2017) Activating the molecular spinterface. Nat Mater 16:507–515. CrossRefGoogle Scholar
  10. Cini A, Mannini M, Totti F et al (2018) Mössbauer spectroscopy of a monolayer of single molecule magnets. Nat Commun 9:480. CrossRefGoogle Scholar
  11. Collauto A, Mannini M, Sorace L et al (2012) A slow relaxing species for molecular spin devices: EPR characterization of static and dynamic magnetic properties of a nitronyl nitroxide radical. J Mater Chem 22:22272CrossRefGoogle Scholar
  12. Cucinotta G, Poggini L, Pedrini A et al (2017) Tuning of a vertical spin valve with a monolayer of single molecule magnets. Adv Funct Mater 27:1703600. CrossRefGoogle Scholar
  13. Dediu V, Hueso LE, Bergenti I et al (2008) Room-temperature spintronic effects in Alq3-based hybrid devices. Phys Rev B 78:115203. CrossRefGoogle Scholar
  14. Dei A, Gatteschi D, Sangregorio C, Sorace L (2004) Quinonoid metal complexes: toward molecular switches. Acc Chem Res 37:827–835CrossRefGoogle Scholar
  15. Gao W, Dickinson L, Grozinger C et al (1996) Self-assembled monolayers of alkylphosphonic acids on metal oxides. Langmuir 12:6429–6435. CrossRefGoogle Scholar
  16. Gatteschi D (2001) Single molecule magnets: a new class of magnetic materials. J Alloys Compd 317:8–12CrossRefGoogle Scholar
  17. Gatteschi D, Sessoli R, Villain J (2006) Molecular nanomagnets. Oxford University Press, Oxford, UKCrossRefGoogle Scholar
  18. Gorini L, Caneschi A, Menichetti S (2006) TPAP/NMO system as a novel method for the synthesis of nitronyl nitroxide radicals. Synlett 2006:948–950. CrossRefGoogle Scholar
  19. Graziosi P, Prezioso M, Gambardella A et al (2013) Conditions for the growth of smooth La 0.7 Sr 0.3 MnO 3 thin films by pulsed electron ablation. Thin Solid Films 534:83–89. CrossRefGoogle Scholar
  20. Halcrow MA (ed) (2013) Spin-crossover materials. Wiley, OxfordGoogle Scholar
  21. Hofmann A, Salman Z, Mannini M et al (2012) Depth-dependent spin dynamics in thin films of TbPc 2 nanomagnets explored by low-energy implanted muons. ACS Nano 6:8390–8396. CrossRefGoogle Scholar
  22. Hueso LEE, Bergenti I, Riminucci A et al (2007) Multipurpose magnetic organic hybrid devices. Adv Mater 19:2639–2642. CrossRefGoogle Scholar
  23. Jin Q, Rodriguez JA, Li CZ et al (1999) Self-assembly of aromatic thiols on Au (111). Surf Sci 425:101–111. CrossRefGoogle Scholar
  24. Joachim C, Gimzewski JK, Aviram A (2000) Electronics using hybrid-molecular and mono-molecular devices. Nature 408:541–548. CrossRefGoogle Scholar
  25. Kahle S, Deng Z, Malinowski N et al (2012) The quantum magnetism of individual manganese-12-acetate molecular magnets anchored at surfaces. Nano Lett 12:518–521. CrossRefGoogle Scholar
  26. Lehmann J, Gaita-Arino A, Coronado E, Loss D (2009) Quantum computing with molecular spin systems. J Mater Chem 19:1672–1677. CrossRefGoogle Scholar
  27. Malavolti L, Lanzilotto V, Ninova S et al (2015) Magnetic bistability in a submonolayer of sublimated Fe 4 single-molecule magnets. Nano Lett 15:535–541. CrossRefGoogle Scholar
  28. Mannini M, Messina P, Sorace L et al (2007a) Addressing individual paramagnetic molecules through ESN–STM. Inorganica Chim Acta 360:3837–3842. CrossRefGoogle Scholar
  29. Mannini M, Sorace L, Gorini L et al (2007b) Self-assembled organic radicals on Au(111) surfaces: a combined ToF–SIMS, STM, and ESR study. Langmuir 23:2389–2397. CrossRefGoogle Scholar
  30. Mannini M, Pineider F, Sainctavit P et al (2009a) Magnetic memory of a single-molecule quantum magnet wired to a gold surface. Nat Mater 8:194–197. CrossRefGoogle Scholar
  31. Mannini M, Pineider F, Sainctavit P et al (2009b) X-Ray magnetic circular dichroism picks out single-molecule magnets suitable for nanodevices. Adv Mater 21:167–171. CrossRefGoogle Scholar
  32. Mas-Torrent M, Crivillers N, Mugnaini V et al (2009) Organic radicals on surfaces: towards molecular spintronics. J Mater Chem 19:1691–1695. CrossRefGoogle Scholar
  33. Osiecki JH, Ullman EF (1968) Studies of free radicals. I. alpha-nitronyl nitroxides, a new class of stable radicals. J Am Chem Soc 2300:1078–1079. CrossRefGoogle Scholar
  34. Pavliček N, Mistry A, Majzik Z et al (2017) Synthesis and characterization of triangulene. Nat Nanotechnol 12:308–311. CrossRefGoogle Scholar
  35. Poggini L, Ninova S, Graziosi P et al (2014) A combined ion scattering, photoemission, and DFT investigation on the termination layer of a La 0.7 Sr 0.3 MnO 3 spin injecting electrode. J Phys Chem C 118:13631–13637. CrossRefGoogle Scholar
  36. Poggini L, Cucinotta G, Pradipto A-MA-M et al (2016) An organic spin valve embedding a self-assembled monolayer of organic radicals. Adv Mater Interfaces 3:1500855. CrossRefGoogle Scholar
  37. Poneti G, Poggini L, Mannini M et al (2015) Thermal and optical control of electronic states in a single layer of switchable paramagnetic molecules. Chem Sci 6:2268–2274. CrossRefGoogle Scholar
  38. Rajaraman G, Caneschi A, Gatteschi D, Totti F (2010) A DFT exploration of the organization of thiols on Au(111): a route to self-assembled monolayer of magnetic molecules. J Mater Chem 20:10747. CrossRefGoogle Scholar
  39. Ruthstein S, Artzi R, Goldfarb D, Naaman R (2005) EPR studies on the organization of self-assembled spin-labeled organic monolayers adsorbed on GaAs. Phys Chem Chem Phys 7:524. CrossRefGoogle Scholar
  40. Sanvito S (2010) Molecular spintronics: the rise of spinterface science. Nat Phys 6:562–564. CrossRefGoogle Scholar
  41. Sanvito S, Barnas J, van der Zant HSJ et al (2011) Molecular spintronics. Chem Soc Rev 40:3336. CrossRefGoogle Scholar
  42. Sato O, Tao J, Zhang Y-Z (2007) Control of magnetic properties through external stimuli. Angew Chem Int Ed 46:2152–2187. CrossRefGoogle Scholar
  43. Sessoli R, Boulon M-E, Caneschi A et al (2015) Strong magneto-chiral dichroism in a paramagnetic molecular helix observed by hard X-rays. Nat Phys 11:69–74. CrossRefGoogle Scholar
  44. Smith CD, Bartley JP, Bottle SE (2002) Electrospray mass spectrometry of stable iminyl nitroxide and nitronyl nitroxide free radicals. J Mass Spectrom 37:897–902. CrossRefGoogle Scholar
  45. Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96:1533–1554. CrossRefGoogle Scholar

Copyright information

© Accademia Nazionale dei Lincei 2018

Authors and Affiliations

  1. 1.Department of Chemistry “U. Schiff”Università degli Studi di Firenze & INSTM RU of FirenzeSesto FiorentinoItaly
  2. 2.Department of Industrial EngineeringUniversità degli Studi di Firenze & INSTM RU of FirenzeFlorenceItaly

Personalised recommendations