Rendiconti Lincei. Scienze Fisiche e Naturali

, Volume 29, Issue 3, pp 609–621 | Cite as

Wave equations without coordinates I: fullerenes

  • James Emil AveryEmail author
The Quantum World of Molecules


Can we solve electronic wave equations absent a coordinate system? The question arises from the wish to treat polyhedral molecules such as fullerenes as two-dimensional closed surfaces. This would allow us to study electronic structure on intrinsic surface manifolds, which can be derived directly from the bond structure. The wave equation restricted to the (non-Euclidean) surface could then be solved without reference to any three-dimensional geometry of the molecule, and hence without the need for quantum chemical geometry optimization. The resulting 2D system can potentially be solved several orders of magnitude faster than the full wave equation. However, because these curved surfaces do not admit any simple coordinate system, we must devise methods that can do without. In this paper, I describe how surface geometries can be derived from fullerene bond graphs as combinatorial objects, and how electronic structure may be studied by solving wave equations directly on these intrinsic surface manifolds, without needing to find three-dimensional geometries. The goal is approximation methods that are rapid enough to systematically analyze entire isomer spaces consisting of millions of molecules, so as to identify structures with desired properties.


Fullerenes Fulleroids Carbon manifolds Intrinsic geometry Electronic structure on Non-Euclidean Manifolds 


  1. Alcamí M et al (2007) Structural patterns in fullerenes showing adjacent pentagons: \({\text{C}}_{20}\)\({\text{C}}_{72}\). J Nanosci Nanotechnol 7(4–5):1329–1338. CrossRefGoogle Scholar
  2. Alexandrov A (1941) Convex Polyhedra (Springer Monographs in Mathematics). (2006 translation from Russian of 1941-edition). Springer, Berlin Heidelberg, (ISBN: 9783540263401) Google Scholar
  3. Ambjorn J, Carfora M, Marzuoli A (1997) The Geometry of Dynamical Triangulations. Hefte Zur Zeitschrift “Der Unfallchirurg v. 50. Springer, Berlin Heidelberg, (ISBN: 9783540633303) Google Scholar
  4. Avery JE (2011) “New computational methods in the quantum theory of nano-structures. PhD thesis. University of Copenhagen, DenmarkGoogle Scholar
  5. Avery JE (2013) “Fast electron repulsion integrals for molecular coulomb sturmians. In: Advances in quantum chemistry. Vol. 67. Advances in Quantum Chemistry, pp. 129–151.
  6. Avery JE (2016) Intrinsic Geometries of Fullerenes. Lecture at Molecular Electronic Structure 2016, Buenos Aires, Argentina.
  7. Avery JE (2017) Solving Wave Equations on Discrete non-Euclidean Surfaces. Lecture at The Quantum World of Molecules: from Orbitals to Spin Networks, conference at L’Accademia Nazionale dei Lincei in Rome, Italy
  8. Avery JE, Avery J (2006) Generalized sturmians and atomic spectra, a edn. World Scientific Publishing, singapore (ISBN: 9812568069) CrossRefGoogle Scholar
  9. Avery JS, Avery JE (2015a) Rapid evaluation of molecular integrals with ETOs. Int J Quantum Chem 115(15):930–936. (ISSN: 0020-7608) CrossRefGoogle Scholar
  10. Avery JE, Avery JS (2015b) Chapter 6: Molecular integrals for exponential-type orbitals using hyperspherical harmonics. Adv Quantum Chem Elsevier Sci 70:265–324. (ISBN: 978-0-12-801891-0) CrossRefGoogle Scholar
  11. Avery JE, Avery JS (2016) A chainlike relative coordinate system for few-particle problems. J Math Chem. 55(2), 584–597.
  12. Avery JE, Avery JS (2017a) Hyperspherical harmonics and their physical applications. World Scientific Publishing, Singapore. (ISBN: 978-981-3229-29-7) CrossRefGoogle Scholar
  13. Avery JE, Avery JS (2017b) 4-center STO interelectron repulsion integrals with coulomb sturmians. Adv Quantum Chem 76:133–146. CrossRefGoogle Scholar
  14. Avery JE, Avery JS (2018) Hyperspherical harmonics and their physical applications. World Scientific, Singapore (ISBN: 978-981-3229-29-7) CrossRefGoogle Scholar
  15. Avery JE, Knudsen MBT, Wirz L (2017) “Exact shortest geodesics on deltahedra manifolds. (In preparation, preliminary work at Accessed 27 June 2018
  16. Avery JS, Rettrup S, Avery JE (2011) Symmetry adapted basis sets: automatic generation for problems in chemistry and physics. World Scientific Publishing, singapore (ISBN: 978-981-4350-46-4) CrossRefGoogle Scholar
  17. Balaban AT et al (1995) Graph invariants for fullerenes. J Chem Inf Comput Sci 35(3):396–404. CrossRefGoogle Scholar
  18. Baldridge KK, Siegel JS (2013) Of graphs and graphenes: molecular design and chemical studies of aromatic compounds. Angew Chem Int Ed 52(21):5436–5438. CrossRefGoogle Scholar
  19. Barborini E et al (2002) Negatively curved spongy carbon. Appl Phys Lett 81(18):3359–3361. CrossRefGoogle Scholar
  20. Bertrand J, Diquet C, Puiseux V (1848) Démonstration d’un théorème de Gauss. J Math 13:80–90Google Scholar
  21. Bobenko A, Springborn B (2007) A discrete Laplace–Beltrami operator for simplicial surfaces. Discrete Comput Geom 38:740–756CrossRefGoogle Scholar
  22. Bolotin K et al (2008) Ultrahigh electron mobility in suspended graphene. Sol State Commun 146(9–10):351–355. (ISSN: 0038-1098) CrossRefGoogle Scholar
  23. Brinkmann G, Goedgebeur J, McKay BD (2012) The generation of fullerenes. J Chem Inf Modeling 52(11):2910–2918. CrossRefGoogle Scholar
  24. Brinkmann G, Goetschalckx P, and Schein S (2017) Goldberg, fuller, caspar, klug and coxeter and a general approach to local symmetry-preserving operations. In: Proc R Soc A 473(2206).
  25. Casella G, Bagno A, Saielli G (2013) Spectroscopic signatures of the carbon buckyonions \({\text{C}}_{60}\) @\({\text{C}}_{180}\) and \({\text{C}}_{60}\)@\({\text{C}}_{240}\): a dispersion-corrected DFT study. Phys Chem Chem Phys 15(41):18030–18038. CrossRefGoogle Scholar
  26. Caspar D, Klug A (1962) Structure and intracellular localization of viruses: physical principles in the construction of regular viruses. Cold Spring Harb Symp Quant Biol 27:1–24. CrossRefGoogle Scholar
  27. Cataldo F, Graovac A, Ori O (2011) The mathematics and topology of fullerenes. Springer, BerlinCrossRefGoogle Scholar
  28. Chang YF et al (2005) Geometry and stability of fullerene cages: \({\text{C}}_{24}\)\({\text{C}}_{70}\). Int J Quantum Chem 105(2):142–147. (ISSN: 1097-461X.) CrossRefGoogle Scholar
  29. Chen Z, Mao R, Liu Y (2012) Fullerenes for cancer diagnosis and therapy: preparation, biological and clinical perspectives. Curr Drug Metab 13(8):1035–1045. CrossRefGoogle Scholar
  30. Cioslowski J, Rao N, Moncrieff D (2000) Standard enthalpies of formation of fullerenes and their dependence on structural motifs. J Am Chem Soc 122(34):8265–8270. CrossRefGoogle Scholar
  31. Crane K et al (2013) Digital geometry processing with discrete exterior calculus. In: ACM SIGGRAPH 2013 courses. SIGGRAPH ’13. ACM, AnaheimGoogle Scholar
  32. Crane K, Weischedel C, Wardetzky M (2013) ‘Geodesics in heat: a new approach to computing distance based on heat ow. ACM Trans Gr 32(5):152. CrossRefGoogle Scholar
  33. Deng Y, Mieczkowski M (1998) Three-dimensional periodic cubic membrane structure in the mitochondria of amoebae chaos carolinensis. Protoplasma 203(1):16–25. (ISSN: 1615-6102) CrossRefGoogle Scholar
  34. Deza M et al (2000) Fullerenes as tilings of surfaces. J Chem Inf Comput Sci 40(3):550–558. CrossRefGoogle Scholar
  35. Diudea MV et al (2005) Periodic cages. J Chem Inf Model 45(2):293–299. CrossRefGoogle Scholar
  36. Dutour M, Deza M (2004) Goldberg–Coxeter construction for 3- and 4-valent plane graphs. Electron J Comb 11:1–49Google Scholar
  37. Fowler PW (1996) Fullerene stability and structure. Contemp Phys 37(3):235–247. CrossRefGoogle Scholar
  38. Fowler PW, Manolopoulos DE (2006) An atlas of fullerenes, 2nd edn. Dover Publications Inc., Mineola, New YorkGoogle Scholar
  39. Ganser BK et al (1999) Assembly and analysis of conical models for the HIV-1 core. Science 283(5398):80–83. (ISSN: 0036-8075) CrossRefGoogle Scholar
  40. Goldberg M (1937) A class of multi-symmetric polyhedra. Tohoku Math J 43:104–108Google Scholar
  41. Graovac A et al (2011) Distance property of fullerenes. Iranian J. Math. Chem. 2(1):99–107Google Scholar
  42. Grimme S, Bannwarth C, Shushkov P (2017) A robust and accurate tight-binding quantum chemical method for structures, vibrational frequencies, and noncovalent interactions of large molecular systems parametrized for all spd-block elements (Z =  1–86). J Chem Theory Computation 13(15):1989–2009. CrossRefGoogle Scholar
  43. Gu XD et al (2010) Discrete Laplace–Beltrami operator determines discrete riemannian metric. In: 20th Fall Workshop in Computational Geometry (FWCG2010).
  44. Hasheminezhad M, Fleischner H, McKay BD (2008) A universal set of growth operations for fullerenes. Chem Phys Lett 464(1–3):118–121. (ISSN: 0009-2614) CrossRefGoogle Scholar
  45. Helgaker T et al (2002) Density-functional theory of linear and nonlinear time-dependent molecular properties. J Chem Phys 117(21):9630–9645CrossRefGoogle Scholar
  46. Huang Y-Y et al (2014) Functionalized fullerenes in photodynamic therapy. J Biomed Nanotechnol 10(9):1918–1936. (ISSN: 1550-7033) CrossRefGoogle Scholar
  47. Jensen F (2006) Introduction to Computational Chemistry, 2nd edn. Wiley, New JerseyGoogle Scholar
  48. Katritzky AR, Karelson M, and Petrukhin R (2005) The CODESSA PRO projectGoogle Scholar
  49. Kennedy RD et al (2008) Self-assembling fullerenes for improved bulk-heterojunction photovoltaic devices. J Am Chem Soc 130(51):17290–17292. CrossRefGoogle Scholar
  50. Khamatgalimov AR, Kovalenko VI (2011) Electronic structure and stability of \({\text{C}}_{80}\) fullerene IPR isomers. Fuller Nanotub Carbon Nanostruct 19(7):599–604. CrossRefGoogle Scholar
  51. Koorepazan-Moftakhar F et al (2014) Sphericality of some classes of fullerenes measured by topology. In: Fullerenes: chemistry, natural sources and technological applications. NIST Nova Publ, New York (In press)Google Scholar
  52. Kotschik D (2006) The topology and combinatorics of soccer balls. Am Sci 94(4):350–357. CrossRefGoogle Scholar
  53. Mattei S et al (2016) The structure and exibility of conical HIV-1 capsids determined within intact virions. Science 354(6318):1434–1437. CrossRefGoogle Scholar
  54. McKay BD (1998) Isomorph-free exhaustive generation. J Algorithms 26(2):306–324. (ISSN: 0196-6774)
  55. Mroz P et al (2007) Functionalized fullerenes mediate photodynamic killing of cancer cells: Type I versus Type II photochemical mechanism. Free Radical Biology and Medicine 43(5):711–719. (ISSN: 0891-5849) CrossRefGoogle Scholar
  56. Nam S et al (2015) Inverted polymer fullerene solar cells exceeding 10% efficiency with poly(2-ethyl-2-oxazoline) nanodots on electron-collecting buffer layers. Nat Comm 6:8929. CrossRefGoogle Scholar
  57. Neophytou M et al (2012) Inkjet-printed polymer-fullerene blends for organic electronic applications. Microelectron Eng 95:102–106. (ISSN: 0167-9317) CrossRefGoogle Scholar
  58. Noël Y et al (2014) Structural, electronic and energetic properties of giant icosahedral fullerenes up to \({\text{C}}_{6000}\): insights from an ab initio hybrid DFT study. Phys Chem Chem Phys 16(26):13390–13401. CrossRefGoogle Scholar
  59. Norton SK et al (2012) Epoxyeicosatrienoic acids are involved in the \({\text{C}}_{70}\) fullerene derivative-induced control of allergic asthma. J Allergy Clin Immunol 130(3):761–769. (ISSN: 0091-6749) CrossRefGoogle Scholar
  60. Olsen ST et al (2017) Molecular properties of sandwiched molecules between electrodes and nanoparticles. Adv Quantum Chem 75:53–102. CrossRefGoogle Scholar
  61. Olsen J, Jørgensen P (1985) Linear and nonlinear response functions for an exact state and for an MCSCF state. J Chem Phys 82(7):3235–3264CrossRefGoogle Scholar
  62. Pilehvar S, De Wael K (2015) Recent Advances in Electrochemical Biosensors Based on Fullerene \({\text{C}}_{60}\) Nano-Structured Platforms. Biosensors 5(4):712–735. CrossRefGoogle Scholar
  63. Prylutska SV et al (2011) Using water-soluble \(C_60\) fullerenes in anticancer therapy. Cancer Nanotechnol 2(1):105–110. (ISSN: 1868-6966) CrossRefGoogle Scholar
  64. Pupysheva OV, Farajian AA, Yakobson BI (2008) Fullerene nanocage capacity for hydrogen storage. Nano Lett 8(3):767–774. CrossRefGoogle Scholar
  65. Regge TE (1961) General relativity without coordinates. Il Nuovo Cimento 19(3):558–571. CrossRefGoogle Scholar
  66. Ryan J et al (2007) Fullerene nanomaterials inhibit the allergic response. J Immunol 179:665–672. CrossRefGoogle Scholar
  67. Schwerdtfeger P, Wirz L, Avery J (2013) Program Fullerene: A software package for constructing and analyzing structures of regular fullerenes. J Comput Chem 34(17):1508–1526. (ISSN: 1096-987X) CrossRefGoogle Scholar
  68. Schwerdtfeger P, Wirz L, Avery J (2015) The topology of fullerenes. WIREs Comp Mol Sci 5(1):96–145. (ISSN: 1759-0884) CrossRefGoogle Scholar
  69. Soler JM et al (2002) The SIESTA method for ab initio order- N materials simulation. J Phys 14(11):2745Google Scholar
  70. Sun X et al (2017) A molecular spin-photovoltaic device. Science 357(6352):677–680. CrossRefGoogle Scholar
  71. Sure R et al (2017) Comprehensive theoretical study of all 1812 \({\text{C}}_{60}\) isomers. Phys Chem Chem Phys 19(22):14296–14305. CrossRefGoogle Scholar
  72. Tortolini C et al (2017) Application of a Nanostructured Enzymatic Biosensor Based on Fullerene and Gold Nanoparticles to Polyphenol Detection. In: Prickril B, Rasooly A (eds) Biosensors and Biodetection: methods and protocols, volume 2: electrochemical, bioelectronic, piezoelectric, cellular and molecular biosensors. Springer New York, New York, pp 41–53. (ISBN: 978-1-4939-6911-1) CrossRefGoogle Scholar
  73. Trinajstic N (1983) Chemical Graph Theory. CRC, Boca Raton (ISBN: 0849352738, 9780849352737) Google Scholar
  74. Wardetzky M (2006) Discrete Differential Operators on Polyhedral Surfaces-Convergence and Approximation. Ph.D. thesis. Freie Universität BerlinGoogle Scholar
  75. Wiener H (1947) Structural determination of parafin boiling points. J Am Chem Soc 69(1):17–20. CrossRefGoogle Scholar
  76. Wirz LN et al (2016) From small fullerenes to the graphene limit: A harmonic force-field method for fullerenes and a comparison to density functional calculations for Goldberg-Coxeter fullerenes up to \({\text{C}}_{980}\). J Comput Chem 37:10–17. (ISSN: 1096-987X) CrossRefGoogle Scholar
  77. Wirz L, Schwerdtfeger P, Avery JE (2017) Naming polyhedra by general face-spirals theory and applications to fullerenes and other polyhedral molecules. Fullerenes, Nanotubes, and Carbon Nanostructures.
  78. Yin R et al (2013) Photodynamic therapy with decacationic [60]fullerene monoadducts: effect of a light absorbing electron-donor antenna and micellar formulation. Nanomedicine 10(4):795–808. CrossRefGoogle Scholar
  79. Zhao G et al (2013) Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics. Nature 497:643–646. CrossRefGoogle Scholar
  80. Zheng G, Irle S, Morokuma K (2005) Performance of the DFTB method in comparison to DFT and semiempirical methods for geometries and energies of \({\text{C}}_{20}\)\({\text{C}}_{86}\) fullerene isomers. Chem Phys Lett 412(1–3):210–216. (ISSN: 0009-2614) CrossRefGoogle Scholar

Copyright information

© Accademia Nazionale dei Lincei 2018

Authors and Affiliations

  1. 1.Niels Bohr InstituteUniversity of CopenhagenCopenhagenDenmark
  2. 2.Centre for Theoretical Chemistry and Physics, New Zealand Institute for Advanced StudyMassey University (Albany)AucklandNew Zealand

Personalised recommendations