Relativistic quantum chemistry involving heavy atoms

Abstract

Quantum chemistry is nowadays a term referring to a wide set of theoretical frameworks and models mainly relying on non-relativistic quantum mechanics. While, in most cases, the picture of the molecular structure and of the chemical reality provided by non-relativistic quantum chemistry is appropriate, we live in a universe with a finite speed of light. While neglecting variation of mass and velocity in the interaction of electrons and atomic nuclei is often safe, this is no more the case when heavy atoms are involved. In the present paper, we will briefly review the most rigorous way to include relativity in the modeling of molecular systems, that is to use the full 4-component (4c) formalism derived from the Dirac equation. Specifically, we will review the implementation that has been carried out in an effective 4c code called BERTHA. A recently developed method to gain deep insights into chemical bond is also presented and discussed in the 4c Dirac–Kohn–Sham context, the so-called natural orbitals for chemical valence/charge-displacement analysis.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

Change history

  • 06 October 2018

    In the original publication, second author’s name was incorrectly published as ‘Leonardo Belapassi’. The correct name should read as ‘Leonardo Belpassi’.

References

  1. Amdahl GM (1967) Validity of the single processor approach to achieving large scale computing capabilities. In: Proceedings of the April 18–20, 1967, spring joint computer conference, ACM, pp 483–485

  2. Bağcı A, Hoggan PE (2016) Solution of the dirac equation using the rayleigh-ritz method: flexible basis coupling large and small components. Results for one-electron systems. Phys Rev E 94:013302. https://doi.org/10.1103/PhysRevE.94.013302

    CAS  Article  Google Scholar 

  3. Bağcı A, Hoggan PE (2018) Analytical evaluation of relativistic molecular integrals i Auxiliary functions. Rend Fis Acc Lincei 29(1):191–197. https://doi.org/10.1007/s12210-018-0669-8

    Article  Google Scholar 

  4. Balabanov NB, Peterson KA (2005) Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc–Zn. J Chem Phys 123(6):064107

    Article  CAS  Google Scholar 

  5. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100. https://doi.org/10.1103/PhysRevA.38.3098

    CAS  Article  Google Scholar 

  6. Belli Dell’Amico D, Calderazzo F, Dantona R, Straehle J, Weiss H (1987) Olefin complexes of gold (i) by carbonyl displacement from carbonylgold (i) chloride. Organometallics 6(6):1207–1210

    Article  Google Scholar 

  7. Belpassi L, Tarantelli F, Sgamellotti A, Quiney HM (2006) Electron density fitting for the Coulomb problem in relativistic density-functional theory. J Chem Phys 124(12):124104. https://doi.org/10.1063/1.2179420

    CAS  Article  Google Scholar 

  8. Belpassi L, Infante I, Tarantelli F, Visscher L (2008a) The chemical bond between Au(I) and the noble gases. comparative study of NgAuF and NgA\({u}^{+}\) (Ng = Ar, Kr, Xe) by density functional and coupled cluster methods. J Am Chem Soc 130(3):1048–1060. https://doi.org/10.1021/ja0772647

    CAS  Article  Google Scholar 

  9. Belpassi L, Tarantelli F, Sgamellotti A, Quiney HM (2008b) Poisson-transformed density fitting in relativistic four-component Dirac–Kohn–Sham theory. J Chem Phys 128(12):124108. https://doi.org/10.1063/1.2868770

    CAS  Article  Google Scholar 

  10. Belpassi L, Storchi L, Quiney HM, Tarantelli F (2011) Recent advances and perspectives in four-component Dirac–Kohn–Sham calculations. Phys Chem Chem Phys 13:12368–12394. https://doi.org/10.1039/C1CP20569B

    CAS  Article  Google Scholar 

  11. Bistoni G, Rampino S, Tarantelli F, Belpassi L (2015) Charge-displacement analysis via natural orbitals for chemical valence: charge transfer effects in coordination chemistry. J Chem Phys 142(8):084112. https://doi.org/10.1063/1.4908537

    CAS  Article  Google Scholar 

  12. Bistoni G, Rampino S, Scafuri N, Ciancaleoni G, Zuccaccia D, Belpassi L, Tarantelli F (2016) How \(\pi \) back-donation quantitatively controls the co stretching response in classical and non-classical metal carbonyl complexes. Chem Sci 7:1174–1184. https://doi.org/10.1039/C5SC02971F

    CAS  Article  Google Scholar 

  13. Casini A, Messori L (2011) Molecular mechanisms and proposed targets for selected anticancer gold compounds. Curr Top Med Chem 11(21):2647–2660

    CAS  Article  Google Scholar 

  14. Chatt J, Duncanson LA (1953) Olefin co-ordination compounds. Part III. Infra-red spectra and structure: attempted preparation of acetylene complexes. J Chem Soc 28:2939–2942

    Article  Google Scholar 

  15. De Santis M, Rampino S, Quiney HM, Belpassi L, Storchi L (2018) Charge-displacement analysis via natural orbitals for chemical valence in the four-component relativistic framework. J Chem Theory Comput. https://doi.org/10.1021/acs.jctc.7b01077

    CAS  Article  Google Scholar 

  16. Dewar MJS (1951) A review of \(\pi \) complex theory. Bull Soc Chim Fr 18:C71–79

    Google Scholar 

  17. Dirac PA (1949) Forms of relativistic dynamics. Rev Mod Phys 21(3):392

    Article  Google Scholar 

  18. Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90(2):1007–1023. https://doi.org/10.1063/1.456153

    CAS  Article  Google Scholar 

  19. Dyall K (2012) Core correlating basis functions for elements 31–118. Theor Chem Acc 131(5):1–11. https://doi.org/10.1007/s00214-012-1217-8. http://dirac.chem.sdu.dk (basis sets are available from the Dirac web site)

  20. Dyall KG (2004) Relativistic double-zeta , triple-zeta, and quadruple-zeta basis sets for the 5\(d\) elements Hf–Hg. Theor Chem Acc 112(5-6):403–409. https://doi.org/10.1007/s00214-004-0607-y. http://dirac.chem.sdu.dk/basisarchives/dyall/ (basis sets are available from the Dirac web site)

    CAS  Article  Google Scholar 

  21. Dyall KG (2007) Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 4d elements Y–Cd. Theor Chem Acc 117(4):483–489

    CAS  Article  Google Scholar 

  22. Dyall KG, Fægri K (1990) Kinetic balance and variational bounds failure in the solution of the dirac equation in a finite gaussian basis set. Chem Phys Lett 174(1):25–32

    CAS  Article  Google Scholar 

  23. Dyall KG, Gomes AS (2010) Revised relativistic basis sets for the 5\(d\) elements Hf–Hg. Theor Chem Acc 125(1-2):97–100. https://doi.org/10.1007/s00214-009-0717-7. http://dirac.chem.sdu.dk/basisarchives/dyall/ (basis sets are available from the Dirac web site)

    Article  CAS  Google Scholar 

  24. Evans CJ, Reynard LM, Gerry MC (2001) Pure rotational spectra, structures, and hyperfine constants of OC-AuX (X = F, Cl, Br). Inorg Chem 40(24):6123–6131

    CAS  Article  Google Scholar 

  25. Fortunelli A, Germano G (2000) Ab initio study of the intra-and intermolecular bonding in AuCl(CO). J Phys Chem A 104(46):10834–10841

    CAS  Article  Google Scholar 

  26. Frenking G (2001) Understanding the nature of the bonding in transition metal complexes: from dewar’s molecular orbital model to an energy partitioning analysis of the metal-ligand bond. J Organomet Chem 635(1):9–23

    CAS  Article  Google Scholar 

  27. Grant IP (2007) Relativistic quantum theory of atoms and molecules: theory and computation. Springer, Berlin (Springer series on atomic, optical, and plasma physics)

    Google Scholar 

  28. Grant IP, Quiney HM (1988) Foundations of the relativistic theory of atomic and molecular structure. Advances in atomic and molecular physics, vol 23. Academic Press, Cambridge, pp 37 – 86. https://doi.org/10.1016/S0065-2199(08)60105-0

    Google Scholar 

  29. Grant IP, Quiney HM (2000) Rayleigh-Ritz approximation of the Dirac operator in atomic and molecular physics. Phys Rev A 62:022508. https://doi.org/10.1103/PhysRevA.62.022508

    Article  Google Scholar 

  30. Huheey J, Keiter E, Keiter R (1993) Inorganic chemistry, 4th edn. Harper Collins, New York, NY

  31. Ishikawa Y, Baretty R, Binning R (1985) Relativistic Gaussian basis set calculations on one-electron ions with a nucleus of finite extent. Chem Phys Lett 121(1):130–133. https://doi.org/10.1016/0009-2614(85)87169-4

    CAS  Article  Google Scholar 

  32. Kendall RA, Dunning TH Jr, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96(9):6796–6806

    CAS  Article  Google Scholar 

  33. Kinoshita T, Ji Fujisawa, Nakazaki J, Uchida S, Kubo T, Segawa H (2012) Enhancement of near-ir photoelectric conversion in dye-sensitized solar cells using an osmium sensitizer with strong spin-forbidden transition. J Phys Chem Lett 3(3):394–398

    CAS  Article  Google Scholar 

  34. Köster AM, Salahub DR et al (2016) demon2k, version 4, the demon developers. http://www.demon-software.com/public_html/program.html. Accessed 14 Feb 2018

  35. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. https://doi.org/10.1103/PhysRevB.37.785

    CAS  Article  Google Scholar 

  36. van Lenthe EV, Snijders J, Baerends E (1996) The zero-order regular approximation for relativistic effects: the effect of spin-orbit coupling in closed shell molecules. J Chem Phys 105(15):6505–6516

    Article  Google Scholar 

  37. Mitoraj MP, Michalak A, Ziegler T (2009) A combined charge and energy decomposition scheme for bond analysis. J Chem Theory Comput 5(4):962–975. https://doi.org/10.1021/ct800503d

    CAS  Article  Google Scholar 

  38. Mitoraj MMA (2007) Natural orbitals for chemical valence as descriptors of chemical bonding in transition metal complexes. J Mol Model 13:347–355

    CAS  Article  Google Scholar 

  39. Nalewajski RF, Mrozek J (1994) Modified valence indices from the two-particle density matrix. Int J Quantum Chem 51(4):187–200. https://doi.org/10.1002/qua.560510403

    CAS  Article  Google Scholar 

  40. Nalewajski RF, Köster AM, Jug K (1993) Chemical valence from the two-particle density matrix. Theor Chem Acc 85(6):463–484. https://doi.org/10.1007/BF01112985

    CAS  Article  Google Scholar 

  41. Nalewajski RF, Mrozek J, Michalak A (1997) Two-electron valence indices from the Kohn–Sham orbitals. Int J Quantum Chem 61(3):589–601

    CAS  Article  Google Scholar 

  42. Pyykko P (1988) Relativistic effects in structural chemistry. Chem Rev 88(3):563–594

    CAS  Article  Google Scholar 

  43. Pyykkö P (2012) Relativistic effects in chemistry: more common than you thought. Annu Rev Phys Chem 63:45–64

    Article  CAS  Google Scholar 

  44. Pyykkö P, Desclaux JP (1979) Relativity and the periodic system of elements. Acc Chem Res 12(8):276–281. https://doi.org/10.1021/ar50140a002

    Article  Google Scholar 

  45. Quiney H, Skaane H, Grant I (1997) Relativistic calculation of electromagnetic interactions in molecules. J Phys B At Mol Opt 30(23):L829

    CAS  Article  Google Scholar 

  46. Quiney HM, Belanzoni P (2002) Relativistic density functional theory using Gaussian basis sets. J Chem Phys 117(12):5550–5563. https://doi.org/10.1063/1.1502245

    CAS  Article  Google Scholar 

  47. Rampino S, Belpassi L, Tarantelli F, Storchi L (2014) Full Parallel Implementation of an all-electron four-component Dirac–Kohn–Sham program. J Chem Theory Comput 10(9):3766–3776. https://doi.org/10.1021/ct500498m

    CAS  Article  Google Scholar 

  48. Rampino S, Storchi L, Belpassi L (2015) Gold-superheavy-element interaction in diatomics and cluster adducts: a combined four-component Dirac–Kohn–Sham/charge-displacement study. J Chem Phys 143(2):024307

    Article  CAS  Google Scholar 

  49. Reiher M, Wolf A (2004) Exact decoupling of the Dirac Hamiltonian. II. The generalized Douglas-Kroll-Hess transformation up to arbitrary order. J Chem Phys 121(22):10945–10956

    CAS  Article  Google Scholar 

  50. Reiher M, Wolf A (2014) Relativistic quantum chemistry: the fundamental theory of molecular science. Wiley, Hoboken

    Google Scholar 

  51. Saunders V (1983) Molecular integrals for Gaussian type functions. In: Methods in computational molecular physics, Springer, New York, pp 1–36

    Google Scholar 

  52. Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL (2007) Basis set exchange: a community database for computational sciences. J Chem Inf Model 47(3):1045–1052. https://doi.org/10.1021/ci600510j

    CAS  Article  Google Scholar 

  53. Swirles B (1935) The relativistic self-consistent field. Proc R Soc Lond Ser A Math Phys Sci 152(877):625–649

    Article  Google Scholar 

  54. Theilacker K, Schlegel HB, Kaupp M, Schwerdtfeger P (2015) Relativistic and solvation effects on the stability of gold (III) Halides in aqueous solution. Inorg Chem 54(20):9869–9875

    CAS  Article  Google Scholar 

  55. Visscher L, Dyall KG (1997) Dirac-fock atomic electronic structure calculations using different nuclear charge distributions. At Data Nucl Data Table 67:207

    CAS  Article  Google Scholar 

  56. Zuccaccia D, Belpassi L, Macchioni A, Tarantelli F (2013) Ligand effects on bonding and ion pairing in cationic gold(I) catalysts bearing unsaturated hydrocarbons. Eur J Inorg Chem 24:4121–4135. https://doi.org/10.1002/ejic.201300285

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank MIUR and the University of Perugia for the financial support of the AMIS project through the program “Dipartimenti di Eccellenza”. LS thanks University of Chieti-Pescara for the financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Leonardo Belapassi.

Additional information

This contribution is the written, peer-reviewed version of a paper presented at the International Conference “The Quantum World of Molecules: from Orbitals to Spin Networks”, held at the Accademia Nazionale dei Lincei in Rome on 27-28 April, 2017.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

De Santis, M., Belapassi, L., Tarantelli, F. et al. Relativistic quantum chemistry involving heavy atoms. Rend. Fis. Acc. Lincei 29, 209–217 (2018). https://doi.org/10.1007/s12210-018-0706-7

Download citation

Keywords

  • Four-component
  • Relativistic DFT
  • Chemical bond
  • Heavy atoms
  • Relativistic effects