Skip to main content
Log in

Relativistic quantum chemistry involving heavy atoms

  • The Quantum World of Molecules
  • Published:
Rendiconti Lincei. Scienze Fisiche e Naturali Aims and scope Submit manuscript

A Correction to this article was published on 06 October 2018

This article has been updated

Abstract

Quantum chemistry is nowadays a term referring to a wide set of theoretical frameworks and models mainly relying on non-relativistic quantum mechanics. While, in most cases, the picture of the molecular structure and of the chemical reality provided by non-relativistic quantum chemistry is appropriate, we live in a universe with a finite speed of light. While neglecting variation of mass and velocity in the interaction of electrons and atomic nuclei is often safe, this is no more the case when heavy atoms are involved. In the present paper, we will briefly review the most rigorous way to include relativity in the modeling of molecular systems, that is to use the full 4-component (4c) formalism derived from the Dirac equation. Specifically, we will review the implementation that has been carried out in an effective 4c code called BERTHA. A recently developed method to gain deep insights into chemical bond is also presented and discussed in the 4c Dirac–Kohn–Sham context, the so-called natural orbitals for chemical valence/charge-displacement analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

  • 06 October 2018

    In the original publication, second author’s name was incorrectly published as ‘Leonardo Belapassi’. The correct name should read as ‘Leonardo Belpassi’.

References

  • Amdahl GM (1967) Validity of the single processor approach to achieving large scale computing capabilities. In: Proceedings of the April 18–20, 1967, spring joint computer conference, ACM, pp 483–485

  • Bağcı A, Hoggan PE (2016) Solution of the dirac equation using the rayleigh-ritz method: flexible basis coupling large and small components. Results for one-electron systems. Phys Rev E 94:013302. https://doi.org/10.1103/PhysRevE.94.013302

    Article  CAS  Google Scholar 

  • Bağcı A, Hoggan PE (2018) Analytical evaluation of relativistic molecular integrals i Auxiliary functions. Rend Fis Acc Lincei 29(1):191–197. https://doi.org/10.1007/s12210-018-0669-8

    Article  Google Scholar 

  • Balabanov NB, Peterson KA (2005) Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc–Zn. J Chem Phys 123(6):064107

    Article  CAS  Google Scholar 

  • Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100. https://doi.org/10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  • Belli Dell’Amico D, Calderazzo F, Dantona R, Straehle J, Weiss H (1987) Olefin complexes of gold (i) by carbonyl displacement from carbonylgold (i) chloride. Organometallics 6(6):1207–1210

    Article  Google Scholar 

  • Belpassi L, Tarantelli F, Sgamellotti A, Quiney HM (2006) Electron density fitting for the Coulomb problem in relativistic density-functional theory. J Chem Phys 124(12):124104. https://doi.org/10.1063/1.2179420

    Article  CAS  Google Scholar 

  • Belpassi L, Infante I, Tarantelli F, Visscher L (2008a) The chemical bond between Au(I) and the noble gases. comparative study of NgAuF and NgA\({u}^{+}\) (Ng = Ar, Kr, Xe) by density functional and coupled cluster methods. J Am Chem Soc 130(3):1048–1060. https://doi.org/10.1021/ja0772647

    Article  CAS  Google Scholar 

  • Belpassi L, Tarantelli F, Sgamellotti A, Quiney HM (2008b) Poisson-transformed density fitting in relativistic four-component Dirac–Kohn–Sham theory. J Chem Phys 128(12):124108. https://doi.org/10.1063/1.2868770

    Article  CAS  Google Scholar 

  • Belpassi L, Storchi L, Quiney HM, Tarantelli F (2011) Recent advances and perspectives in four-component Dirac–Kohn–Sham calculations. Phys Chem Chem Phys 13:12368–12394. https://doi.org/10.1039/C1CP20569B

    Article  CAS  Google Scholar 

  • Bistoni G, Rampino S, Tarantelli F, Belpassi L (2015) Charge-displacement analysis via natural orbitals for chemical valence: charge transfer effects in coordination chemistry. J Chem Phys 142(8):084112. https://doi.org/10.1063/1.4908537

    Article  CAS  Google Scholar 

  • Bistoni G, Rampino S, Scafuri N, Ciancaleoni G, Zuccaccia D, Belpassi L, Tarantelli F (2016) How \(\pi \) back-donation quantitatively controls the co stretching response in classical and non-classical metal carbonyl complexes. Chem Sci 7:1174–1184. https://doi.org/10.1039/C5SC02971F

    Article  CAS  Google Scholar 

  • Casini A, Messori L (2011) Molecular mechanisms and proposed targets for selected anticancer gold compounds. Curr Top Med Chem 11(21):2647–2660

    Article  CAS  Google Scholar 

  • Chatt J, Duncanson LA (1953) Olefin co-ordination compounds. Part III. Infra-red spectra and structure: attempted preparation of acetylene complexes. J Chem Soc 28:2939–2942

    Article  Google Scholar 

  • De Santis M, Rampino S, Quiney HM, Belpassi L, Storchi L (2018) Charge-displacement analysis via natural orbitals for chemical valence in the four-component relativistic framework. J Chem Theory Comput. https://doi.org/10.1021/acs.jctc.7b01077

    Article  CAS  Google Scholar 

  • Dewar MJS (1951) A review of \(\pi \) complex theory. Bull Soc Chim Fr 18:C71–79

    Google Scholar 

  • Dirac PA (1949) Forms of relativistic dynamics. Rev Mod Phys 21(3):392

    Article  Google Scholar 

  • Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90(2):1007–1023. https://doi.org/10.1063/1.456153

    Article  CAS  Google Scholar 

  • Dyall K (2012) Core correlating basis functions for elements 31–118. Theor Chem Acc 131(5):1–11. https://doi.org/10.1007/s00214-012-1217-8. http://dirac.chem.sdu.dk (basis sets are available from the Dirac web site)

  • Dyall KG (2004) Relativistic double-zeta , triple-zeta, and quadruple-zeta basis sets for the 5\(d\) elements Hf–Hg. Theor Chem Acc 112(5-6):403–409. https://doi.org/10.1007/s00214-004-0607-y. http://dirac.chem.sdu.dk/basisarchives/dyall/ (basis sets are available from the Dirac web site)

    Article  CAS  Google Scholar 

  • Dyall KG (2007) Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 4d elements Y–Cd. Theor Chem Acc 117(4):483–489

    Article  CAS  Google Scholar 

  • Dyall KG, Fægri K (1990) Kinetic balance and variational bounds failure in the solution of the dirac equation in a finite gaussian basis set. Chem Phys Lett 174(1):25–32

    Article  CAS  Google Scholar 

  • Dyall KG, Gomes AS (2010) Revised relativistic basis sets for the 5\(d\) elements Hf–Hg. Theor Chem Acc 125(1-2):97–100. https://doi.org/10.1007/s00214-009-0717-7. http://dirac.chem.sdu.dk/basisarchives/dyall/ (basis sets are available from the Dirac web site)

    Article  CAS  Google Scholar 

  • Evans CJ, Reynard LM, Gerry MC (2001) Pure rotational spectra, structures, and hyperfine constants of OC-AuX (X = F, Cl, Br). Inorg Chem 40(24):6123–6131

    Article  CAS  Google Scholar 

  • Fortunelli A, Germano G (2000) Ab initio study of the intra-and intermolecular bonding in AuCl(CO). J Phys Chem A 104(46):10834–10841

    Article  CAS  Google Scholar 

  • Frenking G (2001) Understanding the nature of the bonding in transition metal complexes: from dewar’s molecular orbital model to an energy partitioning analysis of the metal-ligand bond. J Organomet Chem 635(1):9–23

    Article  CAS  Google Scholar 

  • Grant IP (2007) Relativistic quantum theory of atoms and molecules: theory and computation. Springer, Berlin (Springer series on atomic, optical, and plasma physics)

    Book  Google Scholar 

  • Grant IP, Quiney HM (1988) Foundations of the relativistic theory of atomic and molecular structure. Advances in atomic and molecular physics, vol 23. Academic Press, Cambridge, pp 37 – 86. https://doi.org/10.1016/S0065-2199(08)60105-0

    Google Scholar 

  • Grant IP, Quiney HM (2000) Rayleigh-Ritz approximation of the Dirac operator in atomic and molecular physics. Phys Rev A 62:022508. https://doi.org/10.1103/PhysRevA.62.022508

    Article  Google Scholar 

  • Huheey J, Keiter E, Keiter R (1993) Inorganic chemistry, 4th edn. Harper Collins, New York, NY

  • Ishikawa Y, Baretty R, Binning R (1985) Relativistic Gaussian basis set calculations on one-electron ions with a nucleus of finite extent. Chem Phys Lett 121(1):130–133. https://doi.org/10.1016/0009-2614(85)87169-4

    Article  CAS  Google Scholar 

  • Kendall RA, Dunning TH Jr, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96(9):6796–6806

    Article  CAS  Google Scholar 

  • Kinoshita T, Ji Fujisawa, Nakazaki J, Uchida S, Kubo T, Segawa H (2012) Enhancement of near-ir photoelectric conversion in dye-sensitized solar cells using an osmium sensitizer with strong spin-forbidden transition. J Phys Chem Lett 3(3):394–398

    Article  CAS  Google Scholar 

  • Köster AM, Salahub DR et al (2016) demon2k, version 4, the demon developers. http://www.demon-software.com/public_html/program.html. Accessed 14 Feb 2018

  • Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  • van Lenthe EV, Snijders J, Baerends E (1996) The zero-order regular approximation for relativistic effects: the effect of spin-orbit coupling in closed shell molecules. J Chem Phys 105(15):6505–6516

    Article  Google Scholar 

  • Mitoraj MP, Michalak A, Ziegler T (2009) A combined charge and energy decomposition scheme for bond analysis. J Chem Theory Comput 5(4):962–975. https://doi.org/10.1021/ct800503d

    Article  CAS  Google Scholar 

  • Mitoraj MMA (2007) Natural orbitals for chemical valence as descriptors of chemical bonding in transition metal complexes. J Mol Model 13:347–355

    Article  CAS  Google Scholar 

  • Nalewajski RF, Mrozek J (1994) Modified valence indices from the two-particle density matrix. Int J Quantum Chem 51(4):187–200. https://doi.org/10.1002/qua.560510403

    Article  CAS  Google Scholar 

  • Nalewajski RF, Köster AM, Jug K (1993) Chemical valence from the two-particle density matrix. Theor Chem Acc 85(6):463–484. https://doi.org/10.1007/BF01112985

    Article  CAS  Google Scholar 

  • Nalewajski RF, Mrozek J, Michalak A (1997) Two-electron valence indices from the Kohn–Sham orbitals. Int J Quantum Chem 61(3):589–601

    Article  CAS  Google Scholar 

  • Pyykko P (1988) Relativistic effects in structural chemistry. Chem Rev 88(3):563–594

    Article  CAS  Google Scholar 

  • Pyykkö P (2012) Relativistic effects in chemistry: more common than you thought. Annu Rev Phys Chem 63:45–64

    Article  CAS  Google Scholar 

  • Pyykkö P, Desclaux JP (1979) Relativity and the periodic system of elements. Acc Chem Res 12(8):276–281. https://doi.org/10.1021/ar50140a002

    Article  Google Scholar 

  • Quiney H, Skaane H, Grant I (1997) Relativistic calculation of electromagnetic interactions in molecules. J Phys B At Mol Opt 30(23):L829

    Article  CAS  Google Scholar 

  • Quiney HM, Belanzoni P (2002) Relativistic density functional theory using Gaussian basis sets. J Chem Phys 117(12):5550–5563. https://doi.org/10.1063/1.1502245

    Article  CAS  Google Scholar 

  • Rampino S, Belpassi L, Tarantelli F, Storchi L (2014) Full Parallel Implementation of an all-electron four-component Dirac–Kohn–Sham program. J Chem Theory Comput 10(9):3766–3776. https://doi.org/10.1021/ct500498m

    Article  CAS  Google Scholar 

  • Rampino S, Storchi L, Belpassi L (2015) Gold-superheavy-element interaction in diatomics and cluster adducts: a combined four-component Dirac–Kohn–Sham/charge-displacement study. J Chem Phys 143(2):024307

    Article  CAS  Google Scholar 

  • Reiher M, Wolf A (2004) Exact decoupling of the Dirac Hamiltonian. II. The generalized Douglas-Kroll-Hess transformation up to arbitrary order. J Chem Phys 121(22):10945–10956

    Article  CAS  Google Scholar 

  • Reiher M, Wolf A (2014) Relativistic quantum chemistry: the fundamental theory of molecular science. Wiley, Hoboken

    Book  Google Scholar 

  • Saunders V (1983) Molecular integrals for Gaussian type functions. In: Methods in computational molecular physics, Springer, New York, pp 1–36

    Google Scholar 

  • Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL (2007) Basis set exchange: a community database for computational sciences. J Chem Inf Model 47(3):1045–1052. https://doi.org/10.1021/ci600510j

    Article  CAS  Google Scholar 

  • Swirles B (1935) The relativistic self-consistent field. Proc R Soc Lond Ser A Math Phys Sci 152(877):625–649

    Article  Google Scholar 

  • Theilacker K, Schlegel HB, Kaupp M, Schwerdtfeger P (2015) Relativistic and solvation effects on the stability of gold (III) Halides in aqueous solution. Inorg Chem 54(20):9869–9875

    Article  CAS  Google Scholar 

  • Visscher L, Dyall KG (1997) Dirac-fock atomic electronic structure calculations using different nuclear charge distributions. At Data Nucl Data Table 67:207

    Article  CAS  Google Scholar 

  • Zuccaccia D, Belpassi L, Macchioni A, Tarantelli F (2013) Ligand effects on bonding and ion pairing in cationic gold(I) catalysts bearing unsaturated hydrocarbons. Eur J Inorg Chem 24:4121–4135. https://doi.org/10.1002/ejic.201300285

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank MIUR and the University of Perugia for the financial support of the AMIS project through the program “Dipartimenti di Eccellenza”. LS thanks University of Chieti-Pescara for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Belapassi.

Additional information

This contribution is the written, peer-reviewed version of a paper presented at the International Conference “The Quantum World of Molecules: from Orbitals to Spin Networks”, held at the Accademia Nazionale dei Lincei in Rome on 27-28 April, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Santis, M., Belapassi, L., Tarantelli, F. et al. Relativistic quantum chemistry involving heavy atoms. Rend. Fis. Acc. Lincei 29, 209–217 (2018). https://doi.org/10.1007/s12210-018-0706-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-018-0706-7

Keywords

Navigation