Advertisement

Rendiconti Lincei

, Volume 28, Issue 4, pp 615–621 | Cite as

Tektites and microtektites iron oxidation state and water content

  • Gabriele Giuli
Earth and Materials Science

Abstract

Fe redox and water content of impact melt are important parameters as they can greatly affect melt density and viscosity which, in turn, are important parameters greatly affecting the melt evolution and fate. In this manuscript I briefly describe recent research on X-ray absorption spectroscopy (XAS) determination of Fe oxidation state and micro Fourier transform infrared spectroscopy (FTIR) determination of water content putting them in the context of previous research done with different techniques. In comparison with other techniques requiring large amount of samples (e.g. potassium dichromate titration, Mossbauer spectroscopy, Karl Fischer titration), XAFS and micro FTIR techniques allow to study both macroscopic samples of tektites as well as smaller microtektites giving the same error, making it possible to compare results between tektites and micro-tektites and, consequently, also to find differences between tektites and microtektites or between microtektites from different strewn fields. A brief introduction on impact cratering and melt formation during impact events is aimed to introduce the subject to non specialised readers.

Keywords

Impact melt Tektite Microtektite 

Notes

Acknowledgements

Constructive criticism and careful suggestions by an anonymous referee and by Christian Koeberl are greatly appreciated.

References

  1. Alvarez W, Claeys P, Kieffer SW (1995) Emplacement of Cretaceous-Tertiary boundary shocked quartz from Chicxulub crater. Science 269:930–935CrossRefGoogle Scholar
  2. Artemieva NA, Wunnemann K, Krien F, Reimold WU, Stoffler D (2013) Ries crater and suevite revisited—observations and modeling, part II: modeling. Meteorit Planet Sci 48:590–627CrossRefGoogle Scholar
  3. Beran A, Koeberl C (1997) Water in tektites and impact glasses by Fourier-transformed infrared spectrometry. Meteorit Planet Sci 32:211–216CrossRefGoogle Scholar
  4. Dence MR (1971) Impact melts. J Geophys Res 76:5552–5565CrossRefGoogle Scholar
  5. Deutsch A, Ostermann M, Masaitis VL (1997) Geochemistry and neodymium-strontium isotope signature of tektite-like objects from Siberia (Urengoites, South Ural Glass). Meteorit Planet Sci 32:679–686CrossRefGoogle Scholar
  6. Dunlap RA, Sibley ADE (2004) A Mössbauer effect study of Fe site occupancies in Australasian tektites. J Non-Cryst Solids 337:36–41CrossRefGoogle Scholar
  7. Dunlap RA, Eelman DA, MacKay GR (1998) A Mössbauer effect investigation of correlated hyperfine parameters in natural glasses (tektites). J Non-Cryst Solids 223:141–146CrossRefGoogle Scholar
  8. Elkins-Tanton LT, Aussillous P, Bico J, Quéré D, Bush JWM (2003) A laboratory model of splash form tektites. Meteorit Planet Sci 38:1331–1340CrossRefGoogle Scholar
  9. Folco L, D’Orazio M, Tiepolo M, Tonarini S, Ottolini L, Perchiazzi N, Rochette P, Glass BP (2009) Transantarctic mountain microtektites: geochemical affinity with Australasian microtektites. Geochim Cosmochim Acta 73:3694–3722CrossRefGoogle Scholar
  10. Folco L, Glass BP, D’Orazio M, Rochette P (2010) A common volatilization trend in Transantarctic Mountain and Australasian microtektites: implications for their formation model and parent crater location. Earth Planet Sci Lett 293:135–139CrossRefGoogle Scholar
  11. Folco L, Bigazzi G, D’Orazio M, Balestrieri ML (2011) Fission track age of the Transantarctic Mountain microtektites. Geochim Cosmochim Acta 75:2356–2360CrossRefGoogle Scholar
  12. French BM (1988) Traces of catastrophe: a handbook of shock-metamorphic effects in terrestrial meteorite impact structures. LPI Contribution No. 954. Lunar and Planetary Institute, Houston, p 120Google Scholar
  13. French BM, Short NM (eds) (1968) Shock metamorphism of natural materials. Mono Book Corporation, Baltimore, p 644Google Scholar
  14. Fudali RF, Dyar MD, Griscom DL, Schreiber D (1987) The oxidation state of iron in tektite glass. Geochim Cosmochim Acta 51:2749–2756CrossRefGoogle Scholar
  15. Gibson RL, Reimold WU (2010) Introduction: impact cratering and planetary studies—a fifty-year perspective. In: Large meteorite impacts and planetary evolution IV. The Geological Society of America, Special Paper 465, pp vii–xii. doi: 10.1130/2010.2465(00)
  16. Gilchrist J, Thorpe AN, Senftle FE (1969) Infrared analysis of water in tektites and other glasses. J Geophys Res 74:1475–1483CrossRefGoogle Scholar
  17. Giuli G, Pratesi G, Paris E, Cipriani C (2002) Fe local structure in tektites by EXAFS and high resolution XANES spectroscopy. Geochim Cosmochim Acta 66:4347–4353CrossRefGoogle Scholar
  18. Giuli G, Paris E, Pratesi G, Koeberl C, Cipriani C (2003) Iron oxidation state in the Fe-rich layer and silica matrix of Libyan desert glass: a high-resolution XANES study. Meteorit Planet Sci 38:1181–1186CrossRefGoogle Scholar
  19. Giuli G, Eeckhout SE, Paris E, Koeberl C, Pratesi G (2005) Iron oxidation state in impact glass from the K/T boundary at Beloc, Haiti, by high-resolution XANES spectroscopy. Meteorit Planet Sci 40:1575–1580CrossRefGoogle Scholar
  20. Giuli G, Eeckhout SG, Koeberl C, Pratesi G, Paris E (2008) Yellow impact glass from the K/T boundary at Beloc (Haiti): XANES determination of the Fe oxidation state and implications for formation conditions. Meteorit Planet Sci 43:981–986CrossRefGoogle Scholar
  21. Giuli G, Eeckhout SG, Cicconi MR, Koeberl C, Pratesi G, Paris E (2010a) Iron oxidation state and local structure in North American tektites. In: Reimold WU, Gibson R (eds) Large meteorite impacts and planetary evolution IV. Geological Society of America Special Paper 465, Boulder, CO, USA, pp 645–652CrossRefGoogle Scholar
  22. Giuli G, Pratesi G, Eeckhout SG, Koeberl C, Paris E (2010b) Iron reduction in silicate glass produced during the 1945 nuclear test at the trinity site (Alamogordo, New Mexico, USA). In: Reimold WU, Gibson R (eds) Large meteorite impacts and planetary evolution IV. Geological Society of America Special Paper 465, Boulder, CO, USA, pp 653–662CrossRefGoogle Scholar
  23. Giuli G, Paris E, Hess KU, Dingwell DB, Cicconi MR, Eckhout SG, Fehr KT, Valenti P (2011) XAS determination of the Fe local environment and oxidation state in phonolite glasses and implications for the viscosity of silicate melts. Am Mineral 96:631–636CrossRefGoogle Scholar
  24. Giuli G, Cicconi MR, Eeckhout SG, Koeberl C, Glass BP, Pratesi G, Cestelli-Guidi M, Paris E (2013) North-American microtektites are more oxidized than tektites. Am Mineral 98:1930–1937CrossRefGoogle Scholar
  25. Giuli G, Cicconi MR, Stabile P, Trapananti A, Pratesi G, Cestelli-Guidi M, Koeberl C (2014a) New data on the Fe oxidation state and water content of Belize tektites. In: 45th Lunar Planet. Sci., #2322 (abstr.)Google Scholar
  26. Giuli G, Cicconi MR, Eeckhout SG, Paris E, Folco L (2014b) Australasian microtektites from Antarctica: determination of the iron oxidation state. Meteorit Planet Sci 49:696–705CrossRefGoogle Scholar
  27. Glass BP (1970a) Crystalline inclusions in Muong Nong-type tektite. Meteoritics 5:199–200Google Scholar
  28. Glass BP (1970b) Zircon and chromite crystals in a Muong Nong-type tektite. Science 169:766–769CrossRefGoogle Scholar
  29. Glass BP (1990) Tektites and microtektites: key facts and inferences. Tectonophysics 171:393–404CrossRefGoogle Scholar
  30. Glass BP (2000) Relict zircon inclusion in Muong Nong-Type Australasian tektites: implications regarding the location of the source crater. In proceedings of 31st Annual Lunar and Planetary Science Conference, Houston, TX, USA, 13–17 March 2000Google Scholar
  31. Glass BP, Swincki MB, Zwart PA (1979) Australasian, vory Coast and North American tektite strewn fields: size, mass and correlation with the geomagnetic reversal and other earth events. Proc Lunar Planet Sci Conf 1979:2535–2545Google Scholar
  32. Glass BP, Senfltle FE, Muenow DW, Aggrey KE, Thorpe AN (1988) Atomic bomb glass beads: tektite and microtektite analogs. In: proceedings, Second International Conference on Natural Glasses, Prague, September, 1987, 361–369Google Scholar
  33. Grieve RAF, Cintala MF (1992) An analysis of differential impact melt-crater scaling and implications for the terrestrial impact record. Meteoritics 27:526–538CrossRefGoogle Scholar
  34. Grieve RAF, Langenhorst F, Stoffler D (1996) Shock metamorphism of quartz in nature and experiment: II. Significance in geoscience. Meteorit Planet Sci 31:6–35CrossRefGoogle Scholar
  35. Hildebrand AR, Moholy-Nagy H, Koeberl C, May L, Senftle F, Thorpe AN, Smith PE, York D (1994) Tektites found in the ruins of Tikal, Guatemala. In: 25th Lunar Planet. Sci. 549–550Google Scholar
  36. Jackson WE, Farges F, Yeager M, Mabrouk PA, Rossano S, Waychunas GA, Solomon EI, Brown GEJR (2005) Multi-spectroscopic study of Fe(II) in silicate glasses: implications for the coordination environment of Fe(II) in silicate melts. Geochim Cosmochim Acta 69:4315–4332CrossRefGoogle Scholar
  37. Koeberl C (1986) Geochemistry of tektites and impact glasses. Annu Rev Earth Planet Sci 14:323–350CrossRefGoogle Scholar
  38. Koeberl C (1992) Geochemistry and origin of Muong Nong-type tektites. Geochim Cosmochim Acta 56:1033–1064CrossRefGoogle Scholar
  39. Koeberl C (1994) Tektite origin by hypervelocity asteroidal or cometary impact: target rocks, source craters, and mechanisms. In: Dressler BO, Grieve RAF, Sharpton VL (eds) Large meteorite impacts and planetary evolution. Geol. Soc. Amer. Spec. Paper 293, Boulder, pp 133–151Google Scholar
  40. Koeberl C, Beran A (1988) Water content of tektites and impact glasses and related chemical studies. In: 18th Lunar and Planet. Sci. Conf., LPI-Cambridge University Press, 403–408Google Scholar
  41. Koeberl C, MacLeod KG (2002) Catastrophic events and mass extinctions: impacts and beyond. Geological Society of America Special Paper 356Google Scholar
  42. Koeberl C, Martinez-Ruiz FC (2003) Impact markers in the stratigraphic record. Impact studies. Springer, Berlin. doi: 10.1007/978-3-642-55463-6 CrossRefGoogle Scholar
  43. Koeberl C, Sigurdsson H (1992) Geochemistry of impact glasses from the K/T boundary in Haiti: relation to smectites, and a new type of glass. Geochim Cosmochim Acta 56:2113–2129CrossRefGoogle Scholar
  44. Koeberl C, Nishiizumi K, Caffee MW, Glass BP (2015) Beryllium-10 in individual australasian microtektites and origin of tektites. Meteorit Planet Sci 50(Suppl 1):5187Google Scholar
  45. Lacroix A (1935) Les tectites sans formes figures de l’Indochine. Compt Rend Acad Sci Paris 200:2129–2132 (in French) Google Scholar
  46. Lukanin OA, Kadic AA (2007) Decompression mechanism of ferric iron reduction in tektite melts during their formation in the impact process. Geochem Int 45:857–881CrossRefGoogle Scholar
  47. Ma P, Aggrey K, Tonzola C, Schnabel C, de Nicola P, Herzog GF, Wasson JT, Glass BP, Brown L, Tera F, Middleton R, Klein J (2004) Beryllium-10 in Australasian tektites: constraints on the location of the source crater. Geochim Cosmochim Acta 68:3883–3896CrossRefGoogle Scholar
  48. Melosh HJ (1989) Impact cratering: a geologic process. Oxford University, New York, p 245Google Scholar
  49. Montanari A, Koeberl C (2000) Impact stratigraphy: the Italian record. Lecture notes in earth sciences, vol 93. Springer, Berlin, p 364Google Scholar
  50. Moretti R, Ottonello G (2003) Polymerization and disproportionation of iron and sulfur in silicate melts: insights from an optical basicity-based approach. J Non-Cryst Solids 323:111–119CrossRefGoogle Scholar
  51. O’Keefe JA (1976) Tektites and their origin. Elsevier, Amsterdam, p 254Google Scholar
  52. Pierazzo E, Melosh HJ (2000) Melt production in oblique impacts. Icarus 145:252–261CrossRefGoogle Scholar
  53. Ritter X, Deutsch A, Berndt J, Robin E (2015) Impact glass spherules in the Chicxulub K–Pg event bed at Beloc, Haiti: alteration patterns. Meteorit Planet Sci 50:418–432CrossRefGoogle Scholar
  54. Rossano S, Balan E, Morin G, Bauer JP, Calas G, Brouder C (1999) 57Fe Mössbauer spectroscopy of tektites. Phys Chem Miner 26:530–538CrossRefGoogle Scholar
  55. Schulte P, Alegret L, Arenillas I, Arz JA, Barton PJ, Bown PR, Bralower TJ, Christeson GL, Claeys P, Cockell CS, Collins GS, Deutsch A, Goldin TJ, Goto K, Grajales-Nishimura JM, Grieve RAF, Gulick SPS, Johnson KR, Kiessling W, Koeberl C, Kring DA, MacLeod KG, Matsui T, Melosh J, Montanari A, Morgan JV, Neal CR, Nichols DJ, Norris RD, Pierazzo E, Ravizza G, Rebolledo-Vieyra M, Reimold WU, Robin E, Salge T, Speijer RP, Sweet AR, Urrutia-Fucugauchi J, Vajda V, Whalen MT, Willumsen PS (2010) The chicxulub asteroid impact and mass extinction at the cretaceous-paleogene boundary. Science 327:1214–1218CrossRefGoogle Scholar
  56. Shoemaker EM (1962) Interpretation of lunar craters. In: Koual Z (ed) Physics and astronomy of the Moon. Academic Press, New York, pp 283–359Google Scholar
  57. Stoffler D, Langenhorst F (1994) Shock metamorphism of quartz in nature and experiment: I. Basic observation and theory. Meteoritics 29:155–181CrossRefGoogle Scholar
  58. Stöffler D, Artemieva NA, Wünnemann K, Reimold W, Jacob J, Hansen B, Summerson IAT (2013) Ries crater and suevite revisited—observations and modeling. Part I: observations. Meteorit Planet Sci 48:515–589CrossRefGoogle Scholar
  59. Suess FE (1900) Die Herkunft der Moldavite. Jahrb Kais K Geol Reichsanst 50:193–382 (in German) Google Scholar
  60. Watt N, Bouchet RB, Lee CTA (2011) Exploration of tektite formation processes through water and metal content measurements. Meteorit Planet Sci 46:1025–1032CrossRefGoogle Scholar
  61. Wilke M, Farges F, Petit PE, Brown GE, Martin F (2001) Oxidation state and coordination of Fe in minerals: an Fe K-XANES spectroscopic study. Am Mineral 86:714–773CrossRefGoogle Scholar

Copyright information

© Accademia Nazionale dei Lincei 2017

Authors and Affiliations

  1. 1.Scuola di Scienze e Tecnologie-sez. GeologiaUniversità di CamerinoCamerinoItaly

Personalised recommendations