Advertisement

Rendiconti Lincei

, Volume 28, Issue 4, pp 635–641 | Cite as

Bone morphogenic protein BMP7 induces adipocyte differentiation and uncoupling protein UCP1 expression in human bone marrow mesenchymal stem cells

  • Maria Teresa Cambria
  • Giusy Villaggio
  • Concetta Federico
  • Salvatore Saccone
  • Fulvia Sinatra
Article
  • 90 Downloads

Abstract

In this work human bone marrow mesenchymal stem cells (hMSCs) have been differentiated into brown adipocytes by the bone morphogenic protein BMP7, and the morphological and biochemical changes of hMSCs occurring during the differentiation towards brown adipocytes have been investigated. After differentiation, the cells display the presence of numerous vacuoles full of lipids; staining with Oil Red reveals the typical multilocular organization of fat, and a compact network of actin microfilaments surrounding fat vacuoles appears. Uncoupling protein 1 (UCP1), a mitochondrial protein characteristic of the brown adipose tissue, only visible by Western blotting in hMSCs, exhibits a marked increase after the second cycle of adipogenic induction and even more after the fourth cycle, while the mitochondria change their localization from scattered throughout the cytoplasm to mainly near the fat vacuoles. In differentiated brown adipocytes mitochondria close to the vacuoles display a low membrane potential most likely due to the abundant presence of UCP1. Hopefully the additional knowledge about the role of UCP1 in hMSCs and brown adipocytes will be useful in developing strategies for the treatment of several diseases, such as obesity and type 2 diabetes.

Keywords

UCP1 hMSCs Brown (beige) adipocytes Confocal microscopy Western-blot Analysis 

Abbreviations

ANOVA

Analysis of variance

β-AR

β-adrenergic receptors

BAT

Brown adipose tissue

BMP

Bone morphogenic protein

BSA

Bovine serum albumin

CLSM

Confocal laser scanning microscope

DAPI

4′,6-Diamidino-2-phenylindole

EDTA

Ethylenediaminetetraacetic acid

EMS

Electron microscopy sciences

FBS

Fetal bovine serum

FESEM

Field emission scanning electron microscope

FITC

Fluorescein isothiocyanate

hMSCs

Human mesenchymal stem cells

MEM

Minimum essential medium

MSCs

Mesenchymal stromal cells

PBS

Phosphate buffered saline

S.E.M.

Standard error of mean

SDS-PAGE

Sodium dodecyl sulphate-polyAcrylamide gel electrophoresis

SEM

Scanning electron microscope

TGF-β

Transforming growth factor β

UCP1

Uncoupling protein 1

WAT

White adipocyte tissue

References

  1. Arch JR (2002) Beta(3)-Adrenoceptor agonists: potential, pitfalls and progress. Eur J Pharmacol 440(2–3):99–107. doi: 10.1016/S0014-2999(02)01421-8 CrossRefGoogle Scholar
  2. Argyropoulos G, Harper ME (2002) Uncoupling proteins and thermoregulation. J Appl Physiol 92:2187–2198. doi: 10.1152/japplphysiol.00994.2001 CrossRefGoogle Scholar
  3. Barbagallo I, Vanella L, Cambria MT, Tibullo D, Godos J, Guarnaccia L, Zappalà A, Galvano F, Li Volti G (2016) Silibinin regulates lipid metabolism and differentiation in functional human adipocytes. Front Pharmacol 6:309. doi: 10.3389/fphar.2015.00309 CrossRefGoogle Scholar
  4. Beranger GE, Karbiener M, Barquissau V, Pisani DF, Scheideler M, Langin D, Amri EZ (2013) In vitro brown and “brite”/”beige” adipogenesis: human cellular models and molecular aspects. Biochim Biophys Acta 1831:905–914. doi: 10.1016/j.bbalip.2012.11.001 CrossRefGoogle Scholar
  5. Biedler JL, Roffler-Tarlov S, Schachner M, Freedman LS (1978) Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Can Res 38:3751–3757Google Scholar
  6. Birerdinc A, Jarrar M, Stotish T, Randhawa M, Baranova A (2013) Manipulating molecular switches in brown adipocytes and their precursors: a therapeutic potential. Progr Lipid Res 52(1):51–61. doi: 10.1016/j.plipres.2012.08.001 CrossRefGoogle Scholar
  7. Boon MR, Van den Berg SA, Wang Y, Van den Bossche J, Karkampouna S, Bauwens M, De Saint-Hubert M, Van der Horst G, Vukicevic S, de Winther MP, Havekes LM, Jukema JW, Tamsma JT, van der Pluijm G, van Dijk KW, Rensen PC (2013) BMP7 activates brown adipose tissue and reduces diet-induced obesity only at subthermoneutrality. PLoS One 8:e74083. doi: 10.1371/journal.pone.0074083 CrossRefGoogle Scholar
  8. Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359. doi: 10.1152/physrev.00015.2003 CrossRefGoogle Scholar
  9. Cypess AM, Kahn CR (2010) Brown fat as a therapy for obesity and diabetes. Curr Opin Endocrinol Diabetes Obes 17(2):143–149. doi: 10.1097/MED.0b013e328337a81f CrossRefGoogle Scholar
  10. Dejana E, Colella S, Conforti G, Abbadini M, Gaboli M, Marchisio PC (1988) Fibronectin and vitronectin regulate the organization of their respective Arg-Gly-Asp adhesion receptors in cultured human endothelial cells. J Cell Biol 107(3):1215–1223. doi: 10.1083/jcb.107.3.1215 CrossRefGoogle Scholar
  11. Divakaruni AS, Brand MD (2011) The regulation and physiology of mitochondrial proton leak. Physiology (Bethesda) 26:192–205. doi: 10.1152/physiol.00046.2010 CrossRefGoogle Scholar
  12. Elabd C, Chiellini C, Carmona M, Galitzky J, Cochet O, Petersen R, Pénicaud L, Kristiansen K, Bouloumié A, Casteilla L, Dani C, Ailhaud G, Amri EZ (2009) Human multipotent adipose-derived stem cells differentiate into functional brown adipocytes. Stem Cells 27(11):2753–2760. doi: 10.1002/stem.200 CrossRefGoogle Scholar
  13. Enerback S (2010) Human brown adipose tissue. Cell Metab 11(4):248–252. doi: 10.1016/j.cmet.2010.03.008 CrossRefGoogle Scholar
  14. Enerback S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Harper ME, Kozak LP (1997) Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387:90–94. doi: 10.1038/387090a0 CrossRefGoogle Scholar
  15. Fedorenko A, Lishko P, Kirichok Y (2012) Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell 151:400–413. doi: 10.1016/j.cell.2012.09.010 CrossRefGoogle Scholar
  16. Festy F, Hoareau L, Bes-Houtmann S, Péquin AM, Gonthier MP, Munstun A, Hoarau JJ, Césari M, Roche R (2005) Surface protein expression between human adipose tissue-derived stromal cells and mature adipocytes. Histochem Cell Biol 124(2):113–121. doi: 10.1007/s00418-005-0014-z CrossRefGoogle Scholar
  17. Fleury C, Neverova M, Collins S, Raimbault S, Champigny O, Levi-Meyrueis C, Bouillaud F, Seldin MF, Surwit RS, Ricquier D, Warden CH (1997) Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia. Nat Genet 15:269–272. doi: 10.1038/ng0397-269 CrossRefGoogle Scholar
  18. Huang Y, Zheng Y, Jin C, Li X, Jia L, Li W (2016) Long non-coding RNA H19 inhibits adipocyte differentiation of bone marrow mesenchymal stem cells through epigenetic modulation of histone deacetylases. Sci Rep 6:28897. doi: 10.1038/srep28897 CrossRefGoogle Scholar
  19. Julien P, Despres J-P, Angel A (1989) Scanning electron microscopy of very small fat cells and mature fat cells in human obesity. J Lipid Res 30:293–299Google Scholar
  20. Klaus S, Casteilla L, Bouillaud F, Ricquier D (1991) The uncoupling protein UCP: a membraneous mitochondrial ion carrier exclusively expressed in brown adipose tissue. Int J Biochem 23:791–801. doi: 10.1016/0020-711X(91)90062-R CrossRefGoogle Scholar
  21. Klingenberg M, Huang SG (1999) Structure and function of the uncoupling protein from brown adipose tissue. Biochim Biophys Acta 1415:271–296. doi: 10.1016/S0005-2736(98)00232-6 CrossRefGoogle Scholar
  22. Krämer R, Palmieri F (1992) Metabolite carriers in mitochondria. In: Ernster L (ed) Molecular mechanisms in bioenergetics. Elsevier, Amsterdam, pp 359–384CrossRefGoogle Scholar
  23. Leotta CG, Federico C, Brundo MV, Tosi S, Saccone S (2014) HLXB9 gene expression, and nuclear location during in vitro neuronal differentiation in the SK-N-BE neuroblastoma cell line. PLoS One 9(8):e105481. doi: 10.1371/journal.pone.0105481 CrossRefGoogle Scholar
  24. Mancini M, Anderson BO, Caldwell E, Sedghinasab M, Paty PB, Hockenbery DM (1997) Mitochondrial proliferation and paradoxical membrane depolarization during terminal differentiation and apoptosis in human colon carcinoma cell line. J Cell Biol 138:449–469. doi: 10.1083/jcb.138.2.449 CrossRefGoogle Scholar
  25. Matthias A, Ohlson KBE, Fredriksson JM, Jacobsson A, Nedergaard J, Cannon B (2000) Thermogenic responses in brown fat cells are fully UCP1-dependent. UCP2 or UCP3 do not substitute for UCP1 in adrenergically or fatty scid-induced thermogenesis. J Biol Chem 275:25073–25081. doi: 10.1074/jbc.M000547200 CrossRefGoogle Scholar
  26. Maugeri G, D’Amico AG, Reitano R, Saccone S, Federico C, Cavallaro S, D’Agata V (2016a) Parkin modulates expression of HIF-1α and HIF-3α during hypoxia in glioblastoma-derived cell lines in vitro. Cell Tissue Res 364:465–474. doi: 10.1007/s00441-015-2340-3 CrossRefGoogle Scholar
  27. Maugeri G, D’Amico AG, Rasà DM, Reitano R, Saccone S, Federico C, Parenti R, Magro G, D’Agata V (2016b) Expression profile of wilms tumor 1 (Wt1) isoforms in undifferentiated and all-trans retinoic acid differentiated neuroblastoma cells. Genes Cancer 7:47–58. doi: 10.18632/genesandcancer.94 Google Scholar
  28. Nicholls DG, Rial E (1999) A history of the first uncoupling protein, UCP1. J Bioenerg Biomembr 3:1399–1406. doi: 10.1023/A:1005436121005 Google Scholar
  29. Orava J, Nuutila P, Lidell ME, Oikonen V, Noponen T, Viljanen T, Scheinin M, Taittonen M, Niemi T, Enerbäc S, Virtanen K (2011) Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell Metab 14:272–279. doi: 10.1016/j.cmet.2011.06.012 CrossRefGoogle Scholar
  30. Palmieri F (2013) The mitochondrial transporter family SLC25: identification, properties and physiopathology. Mol Asp Med 34:465–484. doi: 10.1016/j.mam.2012.05.005 CrossRefGoogle Scholar
  31. Palmieri F (2014) Mitochondrial transporters of the SLC25 family and associated diseases: a review. J Inherit Metab Dis 37:565–575. doi: 10.1007/s10545-014-9708-5 CrossRefGoogle Scholar
  32. Palmieri F, Monné M (2016) Discoveries, metabolic roles and diseases of mitochondrial carriers: a review. Biochim Biophys Acta 1863(10):2362–2378. doi: 10.1016/j.bbamcr.2016.03.007 CrossRefGoogle Scholar
  33. Parton RG, Molero JC, Floetenmeyer M, Green KM, James DE (2002) Characterization of a distinct plasma membrane macrodomain in differentiated adipocytes. J Biol Chem 277(48):46769–46778. doi: 10.1074/jbc.M205683200 CrossRefGoogle Scholar
  34. Rial E, González-Barroso MM, Fleury C, Iturrizaga S, Sanchis D, Jiménez-Jiménez J, Ricquier D, Goubern M, Bouillaud F (1999) Retinoids activate proton transport by the uncoupling proteins UCP1 and UCP2. EMBO J 18:5827–5833. doi: 10.1093/emboj/18.21.5827 CrossRefGoogle Scholar
  35. Schulz TJ, Tseng YH (2009) Emerging role of bone morphogenetic proteins in adipogenesis and energy metabolism. Cytokine Growth Factor Rev 20:523–531. doi: 10.1016/j.cytogfr.2009.10.019 CrossRefGoogle Scholar
  36. Scuderi S, D’amico AG, Castorina A, Federico C, Marrazzo G, Drago F, Bucolo C, D’Agata V (2014) Davunetide (NAP) protects the retina against early diabetic injury by reducing apoptotic death. J Mol Neurosci 54:395–404. doi: 10.1007/s12031-014-0244-4 CrossRefGoogle Scholar
  37. Seals DR, Bell C (2004) Chronic sympathetic activation: consequence and cause of age-associated obesity? Diabetes 53(2):276–284. doi: 10.2337/diabetes.53.2.276 CrossRefGoogle Scholar
  38. Solanes G, Pedraza N, Iglesias R, Giralt M, Villarroya F (2000) The human uncoupling protein-3 gene promoter requires MyoD and is induced by retinoic acid in muscle cells. FASEB J 14:2141–2143. doi: 10.1096/fj.00-0363fje Google Scholar
  39. Tseng YH, Kokkotou E, Schulz TJ, Huang TL, Winnay N, Taniguchi CM, Tran TT, Suzuki R, Espinoza DO, Yamamoto Y, Ahrens MJ, Dudley AT, Norris AW, Kulkarni RN, Kahn CR (2008) New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454:1000–1004. doi: 10.1038/nature07221 CrossRefGoogle Scholar
  40. Verstraeten VLRM, Renes J, Ramaekers FCS, Kamps M, Kuijpers HJ, Verheyen F, Wabitsch M, Steijlen PM, van Steensel MA, Broers JL (2011) Reorganization of the nuclear lamina and cytoskeleton in adipogenesis. Histochem Cell Biol 135:251–261. doi: 10.1007/s00418-011-0792-4 CrossRefGoogle Scholar
  41. Vozza A, Parisi G, De Leonardis F, Lasorsa FM, Castegna A, Amorese D, Marmo R, Calcagnile VM, Palmieri L, Ricquierd D, Paradies E, Scarcia P, Palmieri F, Bouillaud F, Fiermonte G (2014) UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation. Proc Natl Acad Sci USA 111(3):960–965. doi: 10.1073/pnas.1317400111 CrossRefGoogle Scholar
  42. Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U, Blake J, Schwager C, Eckstein V, Ansorge W, Ho AD (2005) Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 33:1402–1416. doi: 10.1016/j.exphem.2005.07.003 CrossRefGoogle Scholar
  43. Wu J, Cohen P, Spiegelman BM (2016) Adaptive thermogenesis in adipocytes: is beige the new brown? Genes Dev 27:234–235. doi: 10.1101/gad.211649.112 CrossRefGoogle Scholar
  44. Zingaretti MC, Crosta F, Vitali A, Guerrieri M, Frontini A, Cannon B, Nedergaard J, Cinti S (2009) The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J 23(9):3113–3120. doi: 10.1096/fj.09-133546 CrossRefGoogle Scholar

Copyright information

© Accademia Nazionale dei Lincei 2017

Authors and Affiliations

  1. 1.Department of Biomedical and Biotechnological SciencesUniversity of CataniaCataniaItaly
  2. 2.Department of Biological, Geological and Environmental SciencesUniversity of CataniaCataniaItaly

Personalised recommendations