Skip to main content
Log in

Bone morphogenic protein BMP7 induces adipocyte differentiation and uncoupling protein UCP1 expression in human bone marrow mesenchymal stem cells

  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

In this work human bone marrow mesenchymal stem cells (hMSCs) have been differentiated into brown adipocytes by the bone morphogenic protein BMP7, and the morphological and biochemical changes of hMSCs occurring during the differentiation towards brown adipocytes have been investigated. After differentiation, the cells display the presence of numerous vacuoles full of lipids; staining with Oil Red reveals the typical multilocular organization of fat, and a compact network of actin microfilaments surrounding fat vacuoles appears. Uncoupling protein 1 (UCP1), a mitochondrial protein characteristic of the brown adipose tissue, only visible by Western blotting in hMSCs, exhibits a marked increase after the second cycle of adipogenic induction and even more after the fourth cycle, while the mitochondria change their localization from scattered throughout the cytoplasm to mainly near the fat vacuoles. In differentiated brown adipocytes mitochondria close to the vacuoles display a low membrane potential most likely due to the abundant presence of UCP1. Hopefully the additional knowledge about the role of UCP1 in hMSCs and brown adipocytes will be useful in developing strategies for the treatment of several diseases, such as obesity and type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

β-AR:

β-adrenergic receptors

BAT:

Brown adipose tissue

BMP:

Bone morphogenic protein

BSA:

Bovine serum albumin

CLSM:

Confocal laser scanning microscope

DAPI:

4′,6-Diamidino-2-phenylindole

EDTA:

Ethylenediaminetetraacetic acid

EMS:

Electron microscopy sciences

FBS:

Fetal bovine serum

FESEM:

Field emission scanning electron microscope

FITC:

Fluorescein isothiocyanate

hMSCs:

Human mesenchymal stem cells

MEM:

Minimum essential medium

MSCs:

Mesenchymal stromal cells

PBS:

Phosphate buffered saline

S.E.M.:

Standard error of mean

SDS-PAGE:

Sodium dodecyl sulphate-polyAcrylamide gel electrophoresis

SEM:

Scanning electron microscope

TGF-β:

Transforming growth factor β

UCP1:

Uncoupling protein 1

WAT:

White adipocyte tissue

References

  • Arch JR (2002) Beta(3)-Adrenoceptor agonists: potential, pitfalls and progress. Eur J Pharmacol 440(2–3):99–107. doi:10.1016/S0014-2999(02)01421-8

    Article  CAS  Google Scholar 

  • Argyropoulos G, Harper ME (2002) Uncoupling proteins and thermoregulation. J Appl Physiol 92:2187–2198. doi:10.1152/japplphysiol.00994.2001

    Article  CAS  Google Scholar 

  • Barbagallo I, Vanella L, Cambria MT, Tibullo D, Godos J, Guarnaccia L, Zappalà A, Galvano F, Li Volti G (2016) Silibinin regulates lipid metabolism and differentiation in functional human adipocytes. Front Pharmacol 6:309. doi:10.3389/fphar.2015.00309

    Article  Google Scholar 

  • Beranger GE, Karbiener M, Barquissau V, Pisani DF, Scheideler M, Langin D, Amri EZ (2013) In vitro brown and “brite”/”beige” adipogenesis: human cellular models and molecular aspects. Biochim Biophys Acta 1831:905–914. doi:10.1016/j.bbalip.2012.11.001

    Article  CAS  Google Scholar 

  • Biedler JL, Roffler-Tarlov S, Schachner M, Freedman LS (1978) Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Can Res 38:3751–3757

    CAS  Google Scholar 

  • Birerdinc A, Jarrar M, Stotish T, Randhawa M, Baranova A (2013) Manipulating molecular switches in brown adipocytes and their precursors: a therapeutic potential. Progr Lipid Res 52(1):51–61. doi:10.1016/j.plipres.2012.08.001

    Article  CAS  Google Scholar 

  • Boon MR, Van den Berg SA, Wang Y, Van den Bossche J, Karkampouna S, Bauwens M, De Saint-Hubert M, Van der Horst G, Vukicevic S, de Winther MP, Havekes LM, Jukema JW, Tamsma JT, van der Pluijm G, van Dijk KW, Rensen PC (2013) BMP7 activates brown adipose tissue and reduces diet-induced obesity only at subthermoneutrality. PLoS One 8:e74083. doi:10.1371/journal.pone.0074083

    Article  CAS  Google Scholar 

  • Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359. doi:10.1152/physrev.00015.2003

    Article  CAS  Google Scholar 

  • Cypess AM, Kahn CR (2010) Brown fat as a therapy for obesity and diabetes. Curr Opin Endocrinol Diabetes Obes 17(2):143–149. doi:10.1097/MED.0b013e328337a81f

    Article  CAS  Google Scholar 

  • Dejana E, Colella S, Conforti G, Abbadini M, Gaboli M, Marchisio PC (1988) Fibronectin and vitronectin regulate the organization of their respective Arg-Gly-Asp adhesion receptors in cultured human endothelial cells. J Cell Biol 107(3):1215–1223. doi:10.1083/jcb.107.3.1215

    Article  CAS  Google Scholar 

  • Divakaruni AS, Brand MD (2011) The regulation and physiology of mitochondrial proton leak. Physiology (Bethesda) 26:192–205. doi:10.1152/physiol.00046.2010

    Article  CAS  Google Scholar 

  • Elabd C, Chiellini C, Carmona M, Galitzky J, Cochet O, Petersen R, Pénicaud L, Kristiansen K, Bouloumié A, Casteilla L, Dani C, Ailhaud G, Amri EZ (2009) Human multipotent adipose-derived stem cells differentiate into functional brown adipocytes. Stem Cells 27(11):2753–2760. doi:10.1002/stem.200

    Article  CAS  Google Scholar 

  • Enerback S (2010) Human brown adipose tissue. Cell Metab 11(4):248–252. doi:10.1016/j.cmet.2010.03.008

    Article  Google Scholar 

  • Enerback S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Harper ME, Kozak LP (1997) Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387:90–94. doi:10.1038/387090a0

    Article  CAS  Google Scholar 

  • Fedorenko A, Lishko P, Kirichok Y (2012) Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell 151:400–413. doi:10.1016/j.cell.2012.09.010

    Article  CAS  Google Scholar 

  • Festy F, Hoareau L, Bes-Houtmann S, Péquin AM, Gonthier MP, Munstun A, Hoarau JJ, Césari M, Roche R (2005) Surface protein expression between human adipose tissue-derived stromal cells and mature adipocytes. Histochem Cell Biol 124(2):113–121. doi:10.1007/s00418-005-0014-z

    Article  CAS  Google Scholar 

  • Fleury C, Neverova M, Collins S, Raimbault S, Champigny O, Levi-Meyrueis C, Bouillaud F, Seldin MF, Surwit RS, Ricquier D, Warden CH (1997) Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia. Nat Genet 15:269–272. doi:10.1038/ng0397-269

    Article  CAS  Google Scholar 

  • Huang Y, Zheng Y, Jin C, Li X, Jia L, Li W (2016) Long non-coding RNA H19 inhibits adipocyte differentiation of bone marrow mesenchymal stem cells through epigenetic modulation of histone deacetylases. Sci Rep 6:28897. doi:10.1038/srep28897

    Article  CAS  Google Scholar 

  • Julien P, Despres J-P, Angel A (1989) Scanning electron microscopy of very small fat cells and mature fat cells in human obesity. J Lipid Res 30:293–299

    CAS  Google Scholar 

  • Klaus S, Casteilla L, Bouillaud F, Ricquier D (1991) The uncoupling protein UCP: a membraneous mitochondrial ion carrier exclusively expressed in brown adipose tissue. Int J Biochem 23:791–801. doi:10.1016/0020-711X(91)90062-R

    Article  CAS  Google Scholar 

  • Klingenberg M, Huang SG (1999) Structure and function of the uncoupling protein from brown adipose tissue. Biochim Biophys Acta 1415:271–296. doi:10.1016/S0005-2736(98)00232-6

    Article  CAS  Google Scholar 

  • Krämer R, Palmieri F (1992) Metabolite carriers in mitochondria. In: Ernster L (ed) Molecular mechanisms in bioenergetics. Elsevier, Amsterdam, pp 359–384

    Chapter  Google Scholar 

  • Leotta CG, Federico C, Brundo MV, Tosi S, Saccone S (2014) HLXB9 gene expression, and nuclear location during in vitro neuronal differentiation in the SK-N-BE neuroblastoma cell line. PLoS One 9(8):e105481. doi:10.1371/journal.pone.0105481

    Article  Google Scholar 

  • Mancini M, Anderson BO, Caldwell E, Sedghinasab M, Paty PB, Hockenbery DM (1997) Mitochondrial proliferation and paradoxical membrane depolarization during terminal differentiation and apoptosis in human colon carcinoma cell line. J Cell Biol 138:449–469. doi:10.1083/jcb.138.2.449

    Article  CAS  Google Scholar 

  • Matthias A, Ohlson KBE, Fredriksson JM, Jacobsson A, Nedergaard J, Cannon B (2000) Thermogenic responses in brown fat cells are fully UCP1-dependent. UCP2 or UCP3 do not substitute for UCP1 in adrenergically or fatty scid-induced thermogenesis. J Biol Chem 275:25073–25081. doi:10.1074/jbc.M000547200

    Article  CAS  Google Scholar 

  • Maugeri G, D’Amico AG, Reitano R, Saccone S, Federico C, Cavallaro S, D’Agata V (2016a) Parkin modulates expression of HIF-1α and HIF-3α during hypoxia in glioblastoma-derived cell lines in vitro. Cell Tissue Res 364:465–474. doi:10.1007/s00441-015-2340-3

    Article  CAS  Google Scholar 

  • Maugeri G, D’Amico AG, Rasà DM, Reitano R, Saccone S, Federico C, Parenti R, Magro G, D’Agata V (2016b) Expression profile of wilms tumor 1 (Wt1) isoforms in undifferentiated and all-trans retinoic acid differentiated neuroblastoma cells. Genes Cancer 7:47–58. doi:10.18632/genesandcancer.94

    CAS  Google Scholar 

  • Nicholls DG, Rial E (1999) A history of the first uncoupling protein, UCP1. J Bioenerg Biomembr 3:1399–1406. doi:10.1023/A:1005436121005

    Google Scholar 

  • Orava J, Nuutila P, Lidell ME, Oikonen V, Noponen T, Viljanen T, Scheinin M, Taittonen M, Niemi T, Enerbäc S, Virtanen K (2011) Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell Metab 14:272–279. doi:10.1016/j.cmet.2011.06.012

    Article  CAS  Google Scholar 

  • Palmieri F (2013) The mitochondrial transporter family SLC25: identification, properties and physiopathology. Mol Asp Med 34:465–484. doi:10.1016/j.mam.2012.05.005

    Article  CAS  Google Scholar 

  • Palmieri F (2014) Mitochondrial transporters of the SLC25 family and associated diseases: a review. J Inherit Metab Dis 37:565–575. doi:10.1007/s10545-014-9708-5

    Article  CAS  Google Scholar 

  • Palmieri F, Monné M (2016) Discoveries, metabolic roles and diseases of mitochondrial carriers: a review. Biochim Biophys Acta 1863(10):2362–2378. doi:10.1016/j.bbamcr.2016.03.007

    Article  CAS  Google Scholar 

  • Parton RG, Molero JC, Floetenmeyer M, Green KM, James DE (2002) Characterization of a distinct plasma membrane macrodomain in differentiated adipocytes. J Biol Chem 277(48):46769–46778. doi:10.1074/jbc.M205683200

    Article  CAS  Google Scholar 

  • Rial E, González-Barroso MM, Fleury C, Iturrizaga S, Sanchis D, Jiménez-Jiménez J, Ricquier D, Goubern M, Bouillaud F (1999) Retinoids activate proton transport by the uncoupling proteins UCP1 and UCP2. EMBO J 18:5827–5833. doi:10.1093/emboj/18.21.5827

    Article  CAS  Google Scholar 

  • Schulz TJ, Tseng YH (2009) Emerging role of bone morphogenetic proteins in adipogenesis and energy metabolism. Cytokine Growth Factor Rev 20:523–531. doi:10.1016/j.cytogfr.2009.10.019

    Article  CAS  Google Scholar 

  • Scuderi S, D’amico AG, Castorina A, Federico C, Marrazzo G, Drago F, Bucolo C, D’Agata V (2014) Davunetide (NAP) protects the retina against early diabetic injury by reducing apoptotic death. J Mol Neurosci 54:395–404. doi:10.1007/s12031-014-0244-4

    Article  CAS  Google Scholar 

  • Seals DR, Bell C (2004) Chronic sympathetic activation: consequence and cause of age-associated obesity? Diabetes 53(2):276–284. doi:10.2337/diabetes.53.2.276

    Article  CAS  Google Scholar 

  • Solanes G, Pedraza N, Iglesias R, Giralt M, Villarroya F (2000) The human uncoupling protein-3 gene promoter requires MyoD and is induced by retinoic acid in muscle cells. FASEB J 14:2141–2143. doi:10.1096/fj.00-0363fje

    CAS  Google Scholar 

  • Tseng YH, Kokkotou E, Schulz TJ, Huang TL, Winnay N, Taniguchi CM, Tran TT, Suzuki R, Espinoza DO, Yamamoto Y, Ahrens MJ, Dudley AT, Norris AW, Kulkarni RN, Kahn CR (2008) New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454:1000–1004. doi:10.1038/nature07221

    Article  CAS  Google Scholar 

  • Verstraeten VLRM, Renes J, Ramaekers FCS, Kamps M, Kuijpers HJ, Verheyen F, Wabitsch M, Steijlen PM, van Steensel MA, Broers JL (2011) Reorganization of the nuclear lamina and cytoskeleton in adipogenesis. Histochem Cell Biol 135:251–261. doi:10.1007/s00418-011-0792-4

    Article  CAS  Google Scholar 

  • Vozza A, Parisi G, De Leonardis F, Lasorsa FM, Castegna A, Amorese D, Marmo R, Calcagnile VM, Palmieri L, Ricquierd D, Paradies E, Scarcia P, Palmieri F, Bouillaud F, Fiermonte G (2014) UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation. Proc Natl Acad Sci USA 111(3):960–965. doi:10.1073/pnas.1317400111

    Article  CAS  Google Scholar 

  • Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U, Blake J, Schwager C, Eckstein V, Ansorge W, Ho AD (2005) Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 33:1402–1416. doi:10.1016/j.exphem.2005.07.003

    Article  CAS  Google Scholar 

  • Wu J, Cohen P, Spiegelman BM (2016) Adaptive thermogenesis in adipocytes: is beige the new brown? Genes Dev 27:234–235. doi:10.1101/gad.211649.112

    Article  Google Scholar 

  • Zingaretti MC, Crosta F, Vitali A, Guerrieri M, Frontini A, Cannon B, Nedergaard J, Cinti S (2009) The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J 23(9):3113–3120. doi:10.1096/fj.09-133546

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Teresa Cambria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cambria, M.T., Villaggio, G., Federico, C. et al. Bone morphogenic protein BMP7 induces adipocyte differentiation and uncoupling protein UCP1 expression in human bone marrow mesenchymal stem cells. Rend. Fis. Acc. Lincei 28, 635–641 (2017). https://doi.org/10.1007/s12210-017-0643-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-017-0643-x

Keywords

Navigation