Advertisement

Rendiconti Lincei

, Volume 28, Issue 4, pp 701–709 | Cite as

Simulation of CO2 capture by aqueous solution of ammonia in shallow bubble column reactor

Article
  • 80 Downloads

Abstract

In this paper, CO2 capture by an aqueous solution of ammonia in a shallow bubble column reactor is investigated. A two-dimensional CFD model was used to predict liquid axial velocity, gas holds up, turbulent kinetic energy and conversion of reaction with single orifice sparger. The standard k-ε turbulence model along with two-fluid model was used for investigating the gas sparging effects on conversion of reaction in bubble column reactor with height to diameter ratio of 2. It is observed that the conversion of reaction significantly depends on the local gas hold-up. Uniform gas hold-up distribution increases the conversion of reaction, whereas more increase in the gas hold-up do not provide a uniform conversion in the radial direction of the column. For single orifice gas distributor, gas hold-up distribution is high in the column center and low near the walls; therefore, in the center of column lack of liquid phase decreases the conversion; while near the walls, the absence of gas phase reduces local conversion.

Keywords

Shallow bubble column reactor Conversion Hold-up An aqueous solution of ammonia CO2 capture 

List of symbols

Cε1

Constants in k-ε turbulence model

Cε2

Constants in k-ε turbulence model

Cμ

Constants in k-ε turbulence model

Ea

Activation energy

Fk

The interphase momentum exchange of phase k

Fj

Includes the momentum sources and dispersion

k

Turbulent kinetic energy

P

Pressure

T

Temperature

uk

Phase velocity

Greek letters

ε

Dissipation rate

εk

Fractional phase hold-up

ρ

Density

τ

Represents the shear stress

Superscripts

k

Number of phases

μ

Viscosity

ε

Related to dissipation rate

References

  1. Anastasiou AD, Passos AD, Mouza AA (2013) Bubble columns with fine pore sparger and non-Newtonian liquid phase: prediction of gas holdup. Chem Eng Sci 98:331–338. doi: 10.1016/j.ces.2013.05.006 CrossRefGoogle Scholar
  2. Andrew SPS (1954) A rapid method of measuring absorption rates and its application to CO2 absorption into partially carbonated ammonia liquor. Chem Eng Sci 3:279–286. doi: 10.1016/0009-2509(54)80009-1 CrossRefGoogle Scholar
  3. Bahadori F, Rahimi R (2007) Simulation of sparger in the design of shallow bubble column reactors. Chem Eng Technol 30:1–6. doi: 10.1002/ceat.200600395 CrossRefGoogle Scholar
  4. Bai HL, Yeh AC (1997) Removal of CO2 greenhouse gas by ammonia scrubbing. Ind Eng Chem Res 36:2490–2493. doi: 10.1021/ie960748j CrossRefGoogle Scholar
  5. Bernardis M, Carvoli G, Delogu P (1989) NH3 CO2 H2O VLE calculation using an extended UNIQUAC equation. AIChE J 35:314–317. doi: 10.1002/aic.690350217 CrossRefGoogle Scholar
  6. Besbes S, El Hajem M, BenAissia H, Champagne JY, Jay J (2015) PIV measurements and Eulerian–Lagrangian simulations of the unsteady gas–liquid flow in a needle sparger rectangular bubble column. Chem Eng Sci 126:560–572. doi: 10.1016/j.ces.2014.12.046 CrossRefGoogle Scholar
  7. Bhole MR, Roy S, Joshi JB (2006) Laser Doppler anemometer measurements in bubble column: effect of sparger. Ind Eng Chem Res 45:9201–9207. doi: 10.1021/ie060745z CrossRefGoogle Scholar
  8. Brooks LA, Audrieth LF (1946) Ammonium carbamate. Inorg Synth 2:85–97Google Scholar
  9. Deckwer W-D (1991) Bubble column reactors. Wiley, New YorkGoogle Scholar
  10. Deckwer WD, Schumpe A (1993) Improved tools for bubble column reactor design and scale-up. Chem Eng Sci 48:889–911. doi: 10.1016/0009-2509(93)80328-N CrossRefGoogle Scholar
  11. Delnoij E, Kuipers JAM, van Swaij WPW (1999) A three dimensional CFD model for gas–liquid bubble column. Chem Eng Sci 54:2217–2226. doi: 10.1016/S0009-2509(98)00362-5 CrossRefGoogle Scholar
  12. Dhotre MT, Ekambara K, Joshi JB (2004) CFD simulation of sparger design and height to diameter ratio on gas hold-up profiles in bubble column reactors. Exp Therm Fluid Sci 28:407–421. doi: 10.1016/j.expthermflusci.2003.06.001 CrossRefGoogle Scholar
  13. Diao YF, Zheng XY, He BS (2004) Experimental study on capturing CO2 greenhouse gas by ammonia scrubbing. Energy Convers Manag 45:2283–2296. doi: 10.1016/j.enconman.2003.10.011 CrossRefGoogle Scholar
  14. Doshi YK, Pandit AB (2005) Effect of internals and sparger design on mixing behavior in sectionalized bubble column. Chem Eng J 112:117–129. doi: 10.1016/j.cej.2005.07.004 CrossRefGoogle Scholar
  15. Edwards TJ, Newman J, Prausnitz JM (1975) Thermodynamics of aqueous solutions containing volatile weak electrolytes. AIChE J 21:248–259. doi: 10.1002/aic.690210205 CrossRefGoogle Scholar
  16. Edwards TJ, Newman J, Prausnitz JM (1978) Vapor–liquid-equilibria in multicomponent aqueous-solutions of volatile weak electrolytes. AIChE J 24:966–976. doi: 10.1002/aic.690240605 CrossRefGoogle Scholar
  17. Freedman W, Davidson JF (1969) Hold-up and liquid circulation in bubble columns. Trans Ichem E 47:T251–T262Google Scholar
  18. Göppert U, Maurer G (1988) Vapor–liquid equilibria in aqueous solutions of ammonia and carbon dioxide at temperatures between 333 and 393 K and pressures up to 7 MPa. Fluid Phase Equilib 41:153–185CrossRefGoogle Scholar
  19. Haque MW, Nigam KDP, Joshi JB (1986) Optimum gas sparger design for bubble columns with low height-to-diameter ratio. Chem Eng J 33:63–69. doi: 10.1016/0300-9467(86)80035-1 CrossRefGoogle Scholar
  20. Hassan P, Amir MA (2005) Estimation of UNIQUAC-NRF model parameters for NH3 CO2 H2O system. Iran J Chem Chem Eng 24:21–26. http://www.ijcce.ac.ir/article_7787
  21. Hatch TF, Pigford RL (1962) Simultaneous absorption of carbon dioxide and ammonia in water. Ind Eng Chem Fundam 1:209–214. doi: 10.1021/i160003a009 CrossRefGoogle Scholar
  22. Hay WW (2014) the accelerating rate of global change. Rend Fis Acc Lincei 25(1):29–48CrossRefGoogle Scholar
  23. Holmes PE II, Naaz M, Poling BE (1998) Ion concentrations in the CO2–NH3–H2O system from 13C NMR spectroscopy. Ind Eng Chem Res 37:3281–3287. doi: 10.1021/ie9707782 CrossRefGoogle Scholar
  24. Joshi JB (2001) Computational flow modeling and design of bubble column reactors. Chem Eng Sci 56:5893–5933. doi: 10.1016/S0009-2509(01)00273-1 CrossRefGoogle Scholar
  25. Joshi JB, Sharma MM (1976) Mass transfer characteristics of horizontal spargerd contactors. Trans IChem E 54:42–53Google Scholar
  26. Kantarci N, Borak F, Ulgen KO (2005) Bubble column reactors. Process Biochem 40:2263–2283CrossRefGoogle Scholar
  27. Kazakis NA, Papadopoulos ID, Mouza AA (2007) Bubble columns with fine pore sparger operating in the pseudo-homogeneous regime: gas hold up prediction and a criterion for the transition to the heterogeneous regime. Chem Eng Sci 62:3092–3103. doi: 10.1016/j.ces.2007.03.004 CrossRefGoogle Scholar
  28. Koutinas AA, Yianoulis P, Lycourghiods A (1983) Industrial scale modeling of the thermochemical energy storage system based on CO2 + 2NH3 ↔ NH2COONH4 equilibrium. Energy Convers Manag 23:55–61. doi: 10.1016/0196-8904(83)90009-2 CrossRefGoogle Scholar
  29. Krishna R, Ellenberger J, Maretto C (1999a) Flow regime transition in bubble columns. Int Commun Heat Mass Transf 26:467–475. doi: 10.1016/S0735-1933(99)00032-9 CrossRefGoogle Scholar
  30. Krishna R, Urseanu MI, van Baten JM, Ellenberger J (1999b) Influence of scale on the hydrodynamics of bubble columns operating in the churn-turbulent regime: experiments vs. Eulerian simulations. Chem Eng Sci 54:4903–4911. doi: 10.1016/S0009-2509(99)00211-0 CrossRefGoogle Scholar
  31. Krishna R, Dreher AJ, Urseanu MI (2000) Influence of alcohol addition on gas hold-up in bubble columns: development of a scale up model. Int Commun Heat Mass Transf 27:462–472. doi: 10.1016/S0735-1933(00)00123-8 Google Scholar
  32. Kulkarni AV (2010) Design of pipe/ring type of sparger for bubble column reactor. Chem Eng Technol 33:1015–1022. doi: 10.1002/ceat.200800347 Google Scholar
  33. Kulkarni AV, Joshi JB (2011) Design and selection of sparger for bubble column reactor. Part II: Optimum sparger type and design. Chem Eng Res Des 89:1986–1995. doi: 10.1016/j.cherd.2011.01.014 Google Scholar
  34. Kulkarni VA, Badgandi SV, Joshi JB (2009) Design of ring and spider type spargers for bubble column reactor: experimental measurements and CFD simulation of flow and weeping. Chem Eng Res Des 87:1612–1630. doi: 10.1016/j.cherd.2009.06.003 CrossRefGoogle Scholar
  35. Kurz F, Rumpf B, Maurer G (1995) Vapor–liquid–solid equilibria in the system NH3 CO2 H2O from around 310 to 470 K: new experimental data and modeling. Fluid Phase Equilib 104:261–275. doi: 10.1016/0378-3812(94)02653-I CrossRefGoogle Scholar
  36. Li G, Yang X, Dai G (2009) CFD simulation of effects of the configuration of gas distributors on gas–liquid flow and mixing in a bubble column. Chem Eng Sci 64:5104–5116. doi: 10.1016/j.ces.2009.08.016 CrossRefGoogle Scholar
  37. Mani F, Peruzzini M, Stoppioni P (2006) CO2 absorption by aqueous NH3 solution: speciation of ammonium carbamate, bicarbonate and carbonate by 13C NMR study. Green Chem 8:995–1000. doi: 10.1039/B602051H CrossRefGoogle Scholar
  38. McClure DD, Wang C, Kavanagh JM, Fletcher DF, Barton GW (2016) Experimental investigation into the impact of sparger design on bubble columns at high superficial velocities. Chem Eng Res Des 106:205–213. doi: 10.1016/j.cherd.2015.12.027 CrossRefGoogle Scholar
  39. Meng L, Burris S, Bui H, Pan WP (2005) Development of an analytical method for distinguishing ammonium bicarbonate from the products of an aqueous ammonia CO2 scrubber. Anal Chem 77:5947–5952. doi: 10.1021/ac050422x CrossRefGoogle Scholar
  40. Mishima K, Arai Y, Watanabe M, Nishino C (1989) Correlation of VLE of CO2 NH3 H2O using the perturbed hard-sphere, equation of state. Fluid Phase Equilib 46:103–112. doi: 10.1016/0378-3812(89)80279-1 CrossRefGoogle Scholar
  41. Mouza AA, Dalakoglou GK, Paras SV (2005) Effect of liquid properties on the performance of bubble column reactors with fine pore spargers. Chem Eng Sci 60:1465–1475. doi: 10.1016/j.ces.2004.10.013 CrossRefGoogle Scholar
  42. Park H, Jung YM, You JK, Hong WH, Kim JN (2008) Analysis of the CO2 and NH3 reaction in an aqueous solution by 2D IR COS: formation of bicarbonate and carbamate. J Phys Chem A 112:6558–6562. doi: 10.1021/jp800991d CrossRefGoogle Scholar
  43. Pazuki GR, Pahlevanzadeh H, Ahooei AM (2006) Solubility of CO2 in aqueous ammonia solution at low temperature. Calphad 30:27–32CrossRefGoogle Scholar
  44. Pfleger D, Becker S (2001) Modelling and simulation of the dynamic flow behavior in a bubble column. Chem Eng Sci 56:1737–1747. doi: 10.1016/S0009-2509(00)00403-6 CrossRefGoogle Scholar
  45. Pfleger D, Gomes S, Gilbert N, Wagner H-G (1999) Hydrodynamic simulations of laboratory scale bubble columns fundamental studies of the Eulerian–Eulerian modelling approach. Chem Eng Sci 54:5091–5099. doi: 10.1016/S0009-2509(99)00261-4 CrossRefGoogle Scholar
  46. Pourtousi M, Ganesan P, Shanti Sandaran C, Sahu JN (2015a) Methane bubble formation and dynamics in a rectangular bubble column: a CFD study. Chemom Intell Lab Syst 147:111–120. doi: 10.1016/j.chemolab.2015.08.003 CrossRefGoogle Scholar
  47. Pourtousi M, Ganesan P, Sahu JN (2015b) Effect of bubble diameter size on prediction of flow pattern in Euler–Euler simulation of homogeneous bubble column regime. Measurement 76:255–270. doi: 10.1016/j.measurement.2015.08.018 CrossRefGoogle Scholar
  48. Pourtousi M, Ganesan P, Sandaran SC, Sahu JN (2016) Effect of ring sparger diameters on hydrodynamics in bubble column: a numerical investigation. J Taiwan Inst Chem Eng. doi: 10.1016/j.jtice.2016.10.006 Google Scholar
  49. Ranade VV (1997) Modelling of turbulent flow in a bubble column reactor. Chem Eng Res Des 75:14–23. doi: 10.1205/026387697523345 CrossRefGoogle Scholar
  50. Ranade VV, Joshi JB (1987) Transport phenomena in multiphase systems: momentum mass and heat transfer in bubble column reactors. In: Proceedings of symposium on transfer process multiphase systems (BHU, Varanasi), pp 113–196Google Scholar
  51. Ranade VV, Tayalia Y (2001) Modelling of fluid dynamics and mixing in shallow bubble column reactors: influence of sparger design. Chem Eng Sci 56:1667–1675. doi: 10.1016/S0009-2509(00)00395-X CrossRefGoogle Scholar
  52. Rivera-Tinoco R, Bouallou C (2010) Comparison of absorption rates and absorption capacity of ammonia solvents with MEA and MDEA aqueous blends for CO2 capture. J Clean Prod 18:875–880. doi: 10.1016/j.jclepro.2009.12.006 CrossRefGoogle Scholar
  53. Sal S, Gül ÖF, Özdemir M (2013) The effect of sparger geometry on gas holdup and regime transition points in a bubble column equipped with perforated plate spargers. Chem Eng Process Process Intensif 70:259–266. doi: 10.1016/j.cep.2013.03.012 CrossRefGoogle Scholar
  54. Salierno GL, Maestri M, Piovano S, Cassanello M, Cardona MA, Hojman D, Somacal H (2013) Discrete axial motion of a radioactive tracer reconstructed from the response of axially aligned detectors: application to the analysis of a bubble column dynamics. Chem Eng Sci 100:402–412. doi: 10.1016/j.ces.2013.03.029 CrossRefGoogle Scholar
  55. Thorat BN, Joshi JB (2004) Regime transition in bubble column: experimental and prediction. Exp Therm Fluid Sci 28:423–430CrossRefGoogle Scholar
  56. Upadhyay RK, Pant HJ, Roy S (2013) Liquid flow patterns in rectangular air–water bubble column investigated with radioactive particle tracking. Chem Eng Sci 96:152–164. doi: 10.1016/j.ces.2013.03.045 CrossRefGoogle Scholar
  57. Versteeg GF, Dijck V, Awaaij V (1996) On the kinetics between CO2 and alkanolamines both in aqueous and non-aqueous solutions: an overview. Chem Eng Commun 144:113–158. doi: 10.1080/00986449608936450 CrossRefGoogle Scholar
  58. Wu YX, Ong BC, Al-dahhan MH (2001) Predictions of radial gas holdup profiles in bubble column reactors. Chem Eng Sci 56:1207–1210. doi: 10.1016/S0009-2509(00)00330-4 CrossRefGoogle Scholar
  59. Zecchina A (2014) Energy sources and carbon dioxide waste. Rend Fis Acc Lincei 25(1):113–117CrossRefGoogle Scholar
  60. Zhao Q, Wang S, Qin F, Chen C (2011) Composition analysis of CO2–NH3–H2O system based on Raman spectra. Ind Eng Chem Res 50:5316–5325. doi: 10.1021/ie1010178 CrossRefGoogle Scholar
  61. Zhao B, Su Y, Peng Y (2013) Effect of reactor geometry on aqueous ammonia-based carbon dioxide capture in bubble column reactors. Int J Greenh Gas Cont 17:481–487. doi: 10.1016/j.ijggc.2013.06.009 CrossRefGoogle Scholar

Copyright information

© Accademia Nazionale dei Lincei 2017

Authors and Affiliations

  1. 1.Faculty of Chemical EngineeringUrmia University of TechnologyUrmiaIran
  2. 2.Mahabad Petrochemical CompanyMahabadIran

Personalised recommendations