Rendiconti Lincei

, Volume 28, Issue 4, pp 693–699 | Cite as

Cytotoxic activity of biosynthesized Ag Nanoparticles by Plantago major towards a human breast cancer cell line

  • Mohammad H. Sobhani Poor
  • Mehrdad KhatamiEmail author
  • Hakim Azizi
  • Yosef Abazari


Silver nanoparticles were synthesized by bio-inspired route, a cost effective and fast synthesis method. Structural and morphological characterization of nanoparticles was performed by UV–visible absorption spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction and transmission electron microscopy. The cytotoxic activity of both nanoparticles and Plantago major extract containing nanoparticles against a human breast cancer cell (MCF-7) was studied in vitro. MTT (3-4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays were performed using various concentrations of P. major extract (alone) and extract containing AgNPs ranging from 0.5 to 2.5 µg/ml. Data analysis showed significant level of cytotoxic activity. The potential cytotoxicity of silver nanoparticles in the treatment of breast cancer is discussed.


Cytotoxic Breast cancer Plantago major MTT Biosynthesis AgNPs 



The authors thank Bam University of Medical Sciences, Bam, Iran.

Author contributions

The authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors confirm that this article content has no competing interests.


  1. Abedi G, Sotoudeh A, Soleymani M, Shafiee A, Mortazavi P, Aflatoonian MR (2011) A collagen–poly(vinyl alcohol) nanofiber scaffold for cartilage repair. J Biomater Sci Polym Ed 22(18):2445–2455CrossRefGoogle Scholar
  2. Ahmadrajabi R, Shakibaie MR, Iranmanesh Z, Mollaei HR, Sobhanipoor MH (2016) Prevalence of mip virulence gene and PCR-base sequence typing of Legionella pneumophila from cooling water systems of two cities in Iran. Virulence 7(5):602–609CrossRefGoogle Scholar
  3. Ahn S, Singh P, Castro-Aceituno V, Yesmin Simu S, Kim Y-J, Mathiyalagan R, Yang D-C (2017) Gold nanoparticles synthesized using Panax ginseng leaves suppress inflammatory—mediators production via blockade of NF-κB activation in macrophages. Artif Cells Nanomed Biotechnol 45(2):270–276CrossRefGoogle Scholar
  4. Alishah H, Pourseyedi S, Ebrahimipour SY, Mahani SE, Rafiei N (2017) Green synthesis of starch-mediated CuO nanoparticles: preparation, characterization, antimicrobial activities and in vitro MTT assay against MCF-7 cell line. Rend Fis Acc Lincei 28(1):65–71CrossRefGoogle Scholar
  5. Azizi Z, Pourseyedi S, Khatami M, Mohammadi H (2016) Stachys lavandulifolia and Lathyrus sp. mediated for green synthesis of silver nanoparticles and evaluation its antifungal activity against Dothiorella sarmentorum. J Clust Sci 27(5):1613–1628CrossRefGoogle Scholar
  6. Balasooriya ER, Jayasinghe CD, Jayawardena UA, Ruwanthika RWD, Mendis de Silva R, Udagama PV (2017) Honey mediated green synthesis of nanoparticles: new era of safe nanotechnology. J Nanomater 2017:10CrossRefGoogle Scholar
  7. Bankar A, Joshi B, Kumar AR, Zinjarde S (2010) Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloids Surf A 368(1):58–63CrossRefGoogle Scholar
  8. Bankara A, Joshi B, Kumara AR, Zinjarde S (2010) Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Physicochem Eng Aspects 2(4):58–63CrossRefGoogle Scholar
  9. Beitollahi H, Nekooei S (2016) Application of a modified CuO nanoparticles carbon paste electrode for simultaneous determination of isoperenaline, acetaminophen and N-acetyl-l-cysteine. Electroanalysis 28(3):645–653CrossRefGoogle Scholar
  10. Beitollahi H, Tajik S, Jahani S (2016) Electrocatalytic determination of hydrazine and phenol using a carbon paste electrode modified with ionic liquids and magnetic core-shell Fe3O4@SiO2/MWCNT nanocomposite. Electroanalysis 28(5):1093–1099CrossRefGoogle Scholar
  11. Castro-Aceituno V, Ahn S, Simu SY, Singh P, Mathiyalagan R, Lee HA, Yang DC (2016) Anticancer activity of silver nanoparticles from Panax ginseng fresh leaves in human cancer cells. Biomed Pharmacother 84:158–165CrossRefGoogle Scholar
  12. Darroudi M, Sarani M, Oskuee RK, Zak AK, Amiri MS (2014) Nanoceria: gum mediated synthesis and in vitro viability assay. Ceram Int 40(2):2863–2868CrossRefGoogle Scholar
  13. De Sio L, Caracciolo G, Placido T, Pozzi D, Comparelli R, Annesi F, Curri ML, Agostiano A, Bartolino R (2015) Applications of nanomaterials in modern medicine. Rend Fis Acc Lincei 26(2):231–237CrossRefGoogle Scholar
  14. El-Sonbaty SM (2013) Fungus-mediated synthesis of silver nanoparticles and evaluation of antitumor activity. Cancer Nanotechnol 4(4–5):73–79CrossRefGoogle Scholar
  15. Galvez M, Marti C, Lopez-Lazaro M, Cortes F, Ayuso J (2003) Cytotixic effect of Plantago spp. oncanceralllins. J Ethopharmacol 88:125–130CrossRefGoogle Scholar
  16. Ghodselahi T, Arsalani S, Neishaboorynejad T (2014) Synthesis and biosensor application of Ag@Au bimetallic nanoparticles based on localized surface plasmon resonance. Appl Surf Sci 301:230–234CrossRefGoogle Scholar
  17. Ghodselahi T, Neishaboorynejad T, Arsalani S (2015) Fabrication LSPR sensor chip of Ag NPs and their biosensor application based on interparticle coupling. Appl Surf Sci 343:194–201CrossRefGoogle Scholar
  18. Hamedi S, Ghaseminezhad M, Shokrollahzadeh S, Shojaosadati SA (2016) Controlled biosynthesis of silver nanoparticles using nitrate reductase enzyme induction of filamentous fungus and their antibacterial evaluation. Artif Cells Nanomed Biotechnol 14:1–9. doi: 10.1080/21691401.2016.1267011 Google Scholar
  19. Hamedi S, Shojaosadati SA, Shokrollahzadeh S, Hashemi-Najafabadi S (2017) Mechanism study of silver nanoparticle production using Neurospora intermedia. IET Nanobiotech 11:157–163CrossRefGoogle Scholar
  20. Hamedi S, Shojaosadati SA, Mohammadi A (2017b) Evaluation of the catalytic, antibacterial and anti-biofilm activities of the Convolvulus arvensis extract functionalized silver nanoparticles. J Photochem Photobiol, B 167:36–44CrossRefGoogle Scholar
  21. Hashemi S, Asrar Z, Pourseyedi S, Nadernejad N (2016) Green synthesis of ZnO nanoparticles by olive Olea europaea. IET Nanobiotechnol 10(6):400–404CrossRefGoogle Scholar
  22. Jahani S, Beitollahi H (2016) Selective detection of dopamine in the presence of uric acid using NiO nanoparticles decorated on graphene nanosheets modified screen-printed electrodes. Electroanalysis 28(9):2022–2028CrossRefGoogle Scholar
  23. Kanda S, Wani C, Middletion E (1994) Free scavenging and antioxidant activity of plant flavonoids. Adv Exp Med Biol 366:354–376Google Scholar
  24. Kemp MM, Kumar A, Mousa S, Park TJ, Ajayan P, Kubotera N, Mousa SA, Linhardt RJ (2009) Synthesis of gold and silver nanoparticles stabilized with glycosaminoglycans having distinctive biological activities. Biomacromol 10(3):589–595CrossRefGoogle Scholar
  25. Khatami M, Mehnipor R, Poor MHS, Jouzani GS (2016a) Facile biosynthesis of silver nanoparticles using Descurainia sophia and evaluation of their antibacterial and antifungal properties. J Clust Sci 27(5):1601–1612CrossRefGoogle Scholar
  26. Khatami M, Nejad MS, Salari S, Almani PGN (2016) Plant-mediated green synthesis of silver nanoparticles using Trifolium resupinatum seed exudate and their antifungal efficacy on Neofusicoccum parvum and Rhizoctonia solani. IET Nanobiotech 10:237–243CrossRefGoogle Scholar
  27. Khatami M, Heli H, Jahani PM, Azizi H, Nobre MAL (2017a) Copper/copper oxide nanoparticles synthesis using Stachys lavandulifolia and its antibacterial activity. IET Nanobiotech 11:709–713CrossRefGoogle Scholar
  28. Khatami M, Mortazavi SM, Kishani-Farahani Z, Amini A, Amini E, Heli H (2017b) Biosynthesis of silver nanoparticles using pine pollen and evaluation of the antifungal efficiency. Iran J Biotechnol 15(2):95–101Google Scholar
  29. Khodashenas B, Ghorbani HR (2016) Optimisation of nitrate reductase enzyme activity to synthesise silver nanoparticles. IET Nanobiotechnol 10(3):158–161CrossRefGoogle Scholar
  30. Krishnaraj C, Muthukumaran P, Ramachandran R, Balakumaran MD, Kalaichelvan PT (2014) Acalypha indica Linn: biogenic synthesis of silver and gold nanoparticles and their cytotoxic effects against MDA-MB-231, human breast cancer cells. Biotechnol Rep 4:42–49CrossRefGoogle Scholar
  31. Kulandaivelu B, Gothandam KM (2016) Cytotoxic effect on cancerous cell lines by biologically synthesized silver nanoparticles. Braz Arch Biol Technol 59:1–8. doi: 10.1590/1678-4324-2016150529 CrossRefGoogle Scholar
  32. Mahmoudvand H, Fasihi Harandi M, Shakibaie M, Aflatoonian MR, ZiaAli N, Makki MS, Jahanbakhsh S (2014) Scolicidal effects of biogenic selenium nanoparticles against protoscolices of hydatid cysts. Int J Surg 12(5):399–403CrossRefGoogle Scholar
  33. Malorni L, Cacace G, Cuccurullo M, Pocsfalvi G, Chambery A, Farina A, Di Maro A, Parente A, Malorni A (2006) Proteomic analysis of MCF-7 breast cancer cell line exposed to mitogenic concentration of 17β-estradiol. Proteomics 6(22):5973–5982CrossRefGoogle Scholar
  34. Markus J, Mathiyalagan R, Kim Y-J, Abbai R, Singh P, Ahn S, Perez ZEJ, Hurh J, Yang DC (2016) Intracellular synthesis of gold nanoparticles with antioxidant activity by probiotic Lactobacillus kimchicus DCY51T isolated from Korean kimchi. Enzyme Microb Technol 95:85–93CrossRefGoogle Scholar
  35. Meymandi SS, Bahmanyar M, Dabiri S, Aflatonian MR, Bahmanyar S, Meymandi MS (2010) Comparison of cytologic giemsa and real-time polymerase chain reaction technique for the diagnosis of cutaneous Leishmaniasis on scraping smears. Acta Cytol 54(4):539–545CrossRefGoogle Scholar
  36. Moghaddam HM, Beitollahi H, Tajik S, Jahani S, Khabazzadeh H, Alizadeh R (2017) Voltammetric determination of droxidopa in the presence of carbidopa using a nanostructured base electrochemical sensor. Russ J Electrochem 53(5):452–460CrossRefGoogle Scholar
  37. Moradi M, Sattarahmady N, Rahi A, Hatam GR, Sorkhabadi SMR, Heli H (2016) A label-free, PCR-free and signal-on electrochemical DNA biosensor for Leishmania major based on gold nanoleaves. Talanta 161:48–53CrossRefGoogle Scholar
  38. Mortazavi SM, Khatami M, Sharifi I, Heli H, Kaykavousi K, Sobhani Poor MH, Kharazi S, Nobre MAL (2017) Bacterial biosynthesis of gold nanoparticles using Salmonella enterica subsp. enterica serovar Typhi isolated from blood and stool specimens of patients. J Clust Sci 2:1–10. doi: 10.1007/s10876-017-1267-0 Google Scholar
  39. Moussavi SP, Ehrampoush MH, Mahvi AH, Rahimi S, Ahmadian M (2014) Efficiency of multi-walled carbon nanotubes in adsorbing humic acid from aqueous solutions. Asian J Chem 26(3):821–826Google Scholar
  40. Murugan K, Dinesh D, Kavithaa K, Paulpandi M, Ponraj T, Alsalhi MS, Devanesan S, Subramaniam J, Rajaganesh R, Wei H et al (2016) Hydrothermal synthesis of titanium dioxide nanoparticles: mosquitocidal potential and anticancer activity on human breast cancer cells (MCF-7). Parasitol Res 115(3):1085–1096CrossRefGoogle Scholar
  41. Nejad MS, Bonjar GHS, Khatami M, Amini A, Aghighi S (2017) In vitro and in vivo antifungal properties of silver nanoparticles against Rhizoctonia solani, a common agent of rice sheath blight disease. IET Nanobiotech 11:236–240CrossRefGoogle Scholar
  42. Niroomand S, Khorasani-Motlagh M, Noroozifar M, Jahani S, Moodi A (2017) Photochemical and DFT studies on DNA-binding ability and antibacterial activity of lanthanum(III)-phenanthroline complex. J Mol Struct 1130:940–950CrossRefGoogle Scholar
  43. Oh KH, Soshnikova V, Markus J, Kim YJ, Lee SC, Singh P, Castro-Aceituno V, Ahn S, Kim DH, Shim YJ et al (2017) Biosynthesized gold and silver nanoparticles by aqueous fruit extract of Chaenomeles sinensis and screening of their biomedical activities. Artif Cells Nanomed Biotechnol 6:1–8. doi: 10.1080/21691401.2017.1332636 CrossRefGoogle Scholar
  44. Samadi MT, Zolghadrnasab H, Godini K, Poormohammadi A, Ahmadian M, Shanesaz S (2015) Kinetic and adsorption studies of reactive black 5 removal using multi-walled carbon nanotubes from aqueous solution. Der Pharma Chemica 7(5):267–274Google Scholar
  45. Samuelsen AB (2000a) The traditional uses, chemical constituents and biological activities of Plantago major L. A review. J Ethnopharmacol 71(1–2):1–21CrossRefGoogle Scholar
  46. Samuelsen AB (2000b) The traditional uses, chemical constituents and biological activities of Plantago major L. J Ethnopharmacol 71:1–21CrossRefGoogle Scholar
  47. Sattarahmady N, Heli H, Moradi SE (2013) Cobalt hexacyanoferrate/graphene nanocomposite—application for the electrocatalytic oxidation and amperometric determination of captopril. Sens Actuators B Chem 177:1098–1106CrossRefGoogle Scholar
  48. Sattarahmady N, Tondro GH, Gholchin M, Heli H (2015) Gold nanoparticles biosensor of Brucella spp. genomic DNA: visual and spectrophotometric detections. Biochem Eng J 97:1–7CrossRefGoogle Scholar
  49. Seddighi NS, Salari S, Izadi AR (2017) Evaluation of antifungal effect of iron-oxide nanoparticles against different Candida species. IET Nanobiotech 12:1–6. doi: 10.1049/iet-nbt.2017.0025 Google Scholar
  50. Shimoshige H, Nakajima Y, Kobayashi H, Yanagisawa K, Nagaoka Y, Shimamura S, Mizuki T, Inoue A, Maekawa T (2017) Formation of core-shell nanoparticles composed of magnetite and samarium oxide in Magnetospirillum magneticum strain RSS-1. PLoS ONE 12(1):e0170932CrossRefGoogle Scholar
  51. Singh P, Singh H, Ahn S, Castro-Aceituno V, Jiménez Z, Simu SY, Kim YJ, Yang DC (2016) Pharmacological importance, characterization and applications of gold and silver nanoparticles synthesized by Panax ginseng fresh leaves. Artif Cells Nanomed Biotechnol 18:1–10. doi: 10.1080/21691401.2016.1243547 Google Scholar
  52. Singh P, Kim Y-J, Zhang D, Yang D-C (2016b) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34(7):588–599CrossRefGoogle Scholar
  53. Singh P, Kim YJ, Singh H, Ahn S, Castro-Aceituno V, Yang DC (2017a) In situ preparation of water-soluble ginsenoside Rh2-entrapped bovine serum albumin nanoparticles: in vitro cytocompatibility studies. Int J Nanomed 12:4073–4084CrossRefGoogle Scholar
  54. Singh P, Singh H, Castro-Aceituno V, Ahn S, Kim YJ, Farh ME-A, Yang DC (2017b) Engineering of mesoporous silica nanoparticles for release of ginsenoside CK and Rh2 to enhance their anticancer and anti-inflammatory efficacy: in vitro studies. J Nanopart Res 19(7):257CrossRefGoogle Scholar
  55. Sobhanipoor MH, Ahmadrajabi R, Karmostaji A, Saffari F (2017) Molecular characterization of nasal methicillin resistant Staphylococcus aureus isolates from workers of an automaker company in southeast Iran. APMIS. doi: 10.1111/apm.12732 Google Scholar
  56. Soshnikova V, Kim YJ, Singh P, Huo Y, Markus J, Ahn S, Castro-Aceituno V, Kang J, Chokkalingam M, Mathiyalagan R et al (2017) Cardamom fruits as a green resource for facile synthesis of gold and silver nanoparticles and their biological applications. Artif Cells Nanomed Biotechnol 14:1–10. doi: 10.1080/21691401.2017.1296849 CrossRefGoogle Scholar
  57. Srivastava V, Negi AS, Kumar JK, Gupta MM, Khanuja SPS (2005) Plant-based anticancer molecules: a chemical and biological profile of some important leads. Bioorg Med Chem 13:5892–5908CrossRefGoogle Scholar
  58. SudhaLakshmi GY (2011) Green synthesis of silver nanoparticles from Cleome viscosa: synthesis and antimicrobial activity. Int Conf Biosci Biochem Bioinform 5(1):334–337Google Scholar
  59. Zare E, Pourseyedi S, Khatami M, Darezereshki E (2017) Simple biosynthesis of zinc oxide nanoparticles using nature’s source, and it’s in vitro bio-activity. J Mol Struct 1146:96–103CrossRefGoogle Scholar

Copyright information

© Accademia Nazionale dei Lincei 2017

Authors and Affiliations

  1. 1.Research Center for Tropical and Infectious DiseasesKerman University of Medical SciencesKermanIran
  2. 2.School of MedicineBam University of Medical SciencesBamIran
  3. 3.Nanomedicine and Nanobiology Research CenterShiraz University of Medical SciencesShirazIran
  4. 4.Research Center for Tropical and Infectious DiseasesZabol University of Medical SciencesZabolIran
  5. 5.Leishmaniasis Research CenterKerman University of Medical SciencesKermanIran

Personalised recommendations