Advertisement

Rendiconti Lincei

, Volume 28, Issue 4, pp 687–692 | Cite as

Validation and cost-effectiveness of an alternative method to quantify Batrachochytrium dendrobatidis infection in amphibian samples using real-time PCR

  • Stefano Canessa
  • Marco Maggesi
  • Sebastiano Salvidio
  • Elena Grasselli
Article

Abstract

The chytrid fungus Batrachochytrium dendrobatidis (Bd) is considered one of the main causes of amphibian declines worldwide. Detection of Bd infection relies on both histological and molecular techniques, but only quantitative real-time PCR (qPCR) provides quantitative information on intensity of infection. To quantify Bd infection, Boyle et al. (2004) developed a standard method using TaqMan qPCR assay: however, the high costs of this method can hinder its applicability for studies with limited resources. Starting from the method by Boyle et al. (2004), we set up and fully validated a qPCR assay based on modified primers and SYBR Green chemistry. The modified SYBR Green has high sensitivity and specificity, as well as the ability to quantify Bd infection loads as well as the standard TaqMan qPCR, but it is more than 60% cheaper. This is obtained both by intrinsic cost-effectiveness of the SYBR Green technique and by reducing reaction volumes of qPCR. Therefore, this modified qPCR assay constitutes a cheaper molecular method to quantify Bd in amphibians.

Keywords

Chytridiomycosis Amphibian disease Infection loads Monitoring qPCR Cost evaluation 

Notes

Acknowledgements

We thank Trenton Garner for providing the Bd standards, Marco Giovine for reading and commenting a preliminary draft, Frank Pasmans, An Martel, and Giulia Tessa for the useful discussion. SC is supported by the Research Foundation Flanders (FWO). This work was also supported by FRA2016 from University of Genoa.

References

  1. Berger L, Speare R, Skerratt LF (2005) Distribution of Batrachochytrium dendrobatidis and pathology in the skin of the Green frogs Litoria caerulea with severe chytriodiomycosis. Dis Aquat Org 68:65–70CrossRefGoogle Scholar
  2. Bosch J, Martínez-Solano I, García-París M (2001) Evidence of a chytrid fungus infection involved in the decline of the common midwife toad (Alytes obstetricans) in protected areas of central Spain. Biol Cons 97:331–337CrossRefGoogle Scholar
  3. Boyle DG, Boyle DB, Olsen V, Morgan JAT, Hyatt AD (2004) Diseases of aquatic organisms 60:141–148CrossRefGoogle Scholar
  4. Carvalho T, Berger CG, Toledo LF (2017) Historical amphibian declines and extinctions in Brazil linked to chytridiomycosis. Proc R Soc B 284:20162254CrossRefGoogle Scholar
  5. Daszak P, Berger L, Cunningham AA, Hyatt AD, Green DE, Speare R (1999) Emerging infectious diseases and amphibian population declines. Emerg Infect Dis 5:735–748CrossRefGoogle Scholar
  6. Di Rosa I, Simoncelli F, Fagotti A, Pascolini R (2007) The proximate causes of frogs decline? Nature 447:E4–E5CrossRefGoogle Scholar
  7. DiGiacomo RF, Koepsell TD (1986) Sampling for detection of infection or disease in animal populations. J Am Vet Med Assoc 189:22–23Google Scholar
  8. Hyatt AD, Boyle DG, Olsen V, Boyle D, Berger L, Obendorf D, Dalton A, Kriger K, Hero M, Hines H, Phillott R, Campbell R, Marantelli G, Gleason F, Coiling A (2017) Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis. Dis Aquat Org 73:175–192Google Scholar
  9. Kerby JL, Schieffer A, Brown JR, Whitfield S (2013) Utilization of fast qPCR techniques to detect the amphibian chytrid fungus: a cheaper and more efficient alternative method. Meth Ecol Evol 4:162–166CrossRefGoogle Scholar
  10. Khirstein JD, Anderson CW, Wood JS, Longcore JE, Voytek MA (2007) Quantitative PCR detection of Batrachochytrium dendrobatidis DNA from sediments and water. Dis Aquat Org 77:11–15CrossRefGoogle Scholar
  11. Krieger KM, Hero J-M, Ashton KJ (2006) Cost efficiency of chytridiomycosis using PCR assay. Dis Aquat Org 71:149–154CrossRefGoogle Scholar
  12. Longcore JE, Pessier AP, Nichols DK (1999) Batrachochytrium dendrobatidis gen. et sp. nov., a chytrid pathogenic to amphibians. Micologia 91:219–227CrossRefGoogle Scholar
  13. Martel A, Adriaensen C, Sharifian-Fard M, Spitzen-van der Sluijs A, Louette G, Baert K, Crombaghs B, Dewulf J, Pasmans F (2013a) The absence of zoonotic agents in invasive bullfrogs (Lithobates catesbeianus) in Belgium and The Netherlands. EcoHealth 10:344–347CrossRefGoogle Scholar
  14. Martel A, Spitzen-van der Sluijs A, Blooi M, Bert W, Ducatelle R, Fisher MC, Woeltjes A, Bosman W, Chiers K, Bossuyt F, Pasmans F (2013b) Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. Proc Natl Acad Sci USA 110:15325–15329CrossRefGoogle Scholar
  15. Martel A, Blooi M, Adriaensen C, Van Rooij P, Beukema W, Fisher MC, Farrer RA, Schmidt BR, Tobler U, Goka K, Lips KR, Muletz C, Zamudio K, Bosch J, Lötters S, Wombell E, Garner TWJ, Cunningham AA, Spitzen-van der Sluijs A, Salvidio S, Ducatelle R, Nishikawa K, Nguyen TT, Kolby JE, Van Bocxlaer I, Bossuyt F, Pasmans F (2014) Recent introduction of a chytrid fungus endangers Western Palearctic salamanders. Science 346:630–631CrossRefGoogle Scholar
  16. Olson DH, Aanensen DM, Ronnenberg KL, Powell CI, Walker SF, Bielby J, Garner TWJ, Weaver G, The Bd Mapping Group, Fisher MC (2013) Mapping the global emergence of Batrachochytrium dendrobatidis, the amphibian chytrid fungus. PLoS ONE 8:e56802CrossRefGoogle Scholar
  17. Skerratt LF, Mendez D, McDonald KR, Garland S, Livingstone J, Berger L, Speare R (2011) Validation of diagnostic tests in wildlife: the case of Chytridiomycosis in wild amphibians. J Herpetol 45:444–450CrossRefGoogle Scholar
  18. Spitzen-van der Sluijs A, Martel A, Hallmann CA, Bosman W, Garner TW, Van Rooij P, Jooris R, Haesebrouck F, Pasmans F (2014) Environmental determinants of recent endemism of Batrachochytrium dendrobatidis infections in amphibian assemblages in the absence of disease outbreaks. Conserv Biol 28:1302–1311Google Scholar
  19. Vredenburg VT, Knapp RA, Tunstall TS, Briggs CI (2010) Dynamics of an emerging disease drive large-scale amphibian population extinctions. Proc Natl Acad Sci USA 107:9689–9694CrossRefGoogle Scholar
  20. Wagner N, Neubeck C, Guicking D, Finke L, Wittich M, Weising K, Geske C, Veith M (2017) No evidence for effects of infection with the amphibian chytrid fungus on populations of yellow-bellied toads. Dis Aquat Org 123:55–65CrossRefGoogle Scholar
  21. Whitfield SM, Kerby J, Gentry LR, Donnelly MA (2012) Temporal variation in infection prevalence by the amphibian chytrid fungus in three species of frogs at La Selva, Costa Rica. Biotropica 44:779–784CrossRefGoogle Scholar
  22. Yuryev A (2007) PCR primer design. Methods in Molecular Biology™ series, vol 402. Humana Press, Totowa, NJGoogle Scholar

Copyright information

© Accademia Nazionale dei Lincei 2017

Authors and Affiliations

  1. 1.Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV)The University of GenoaGenoaItaly
  2. 2.Istituto Nazionale Biostrutture e BiosistemiRomeItaly
  3. 3.Department of pathology, bacteriology and avian diseases, Faculty of Veterinary MedicineGhent UniversityMerelbekeBelgium

Personalised recommendations