Rendiconti Lincei

, Volume 28, Issue 4, pp 605–614 | Cite as

Crystal chemical characterization and computational modeling of a μ-oxo Fe(III) complex with 1,10-phenanthroline clarify its interaction and reactivity with montmorillonite

  • Maria Franca Brigatti
  • Claro Ignacio Sainz Díaz
  • Marco Borsari
  • Fabrizio Bernini
  • Elena Castellini
  • Daniele Malferrari
Earth and Materials Science
  • 65 Downloads

Abstract

This work provides a systematic study of the μ-oxo-di-fac-[triaqua-(1,10-phenanthroline-κ2 N,N′)-iron(III)]bis(sulfate), [(OH2)3(phen)FeOFe(phen)(OH2)3] (SO4)2 (phen = phenanthroline). Crystal structure is determined by single-crystal X-ray diffraction data and refined to R = 0.039. The crystal structure is monoclinic (Z = 2), space group P21 with unit cell dimensions a = 8.5157(3), b = 17.6434(5), c = 9.9678(3) Å, β = 90.133(2)°, V = 1497.62(8) Å3. The triaqua(1,10-phenanthroline)iron(III) parts are linked through one oxo-bridge. Both Fe(III) cations show a distorted octahedral coordination. The single-crystal data are complemented by computational chemistry modeling at quantum mechanical level, X-ray powder diffraction at room and high temperature conditions and by thermal analysis. Molecular modeling suggests that the role of the crystallization water molecules is critical to establish the intermolecular interactions for the stability of the crystal structure.

Keywords

Ab initio calculations Iron phenanthroline Montmorillonite Thermal analysis X-ray diffraction 

Notes

Acknowledgements

We acknowledge Dr. Luca Medici (IMAA-CNR, Potenza, Italy) for the μXRD measurements; the University of Modena and Reggio Emilia for the 2015 Visiting Professor program and FAR 2016 funding program (PAsTIME Project); the Computational Centre of Granada University and the CINECA (Bologna, Italy) for the high performance Computing Service; the Andalusian Project RMN1897 (Spanish Project FIS2013-48444-C2-2-P) for financial support. An appreciated technical support was also provided by Centro Interdipartimentale Grandi Strumenti (CIGS) of University of Modena and Reggio Emilia and by its staff.

Supplementary material

12210_2017_615_MOESM1_ESM.txt (25 kb)
Supplementary material 1 (TXT 25 kb)
12210_2017_615_MOESM2_ESM.pdf (130 kb)
Supplementary material 2 (PDF 130 kb)
12210_2017_615_MOESM3_ESM.pdf (32 kb)
Supplementary material 3 (PDF 31 kb)

References

  1. Bernini F, Castellini E, Malferrari D, Borsari M, Brigatti MF (2015) Stepwise structuring of the adsorbed layer modulates the physic-chemical properties of hybrid materials from phyllosilicates interacting with the μ-oxo Fe+3 phenanthroline complex. Micropor Mesopor Mat 2015:19–29. doi: 10.1016/j.micromeso.2015.02.039 CrossRefGoogle Scholar
  2. Bernini F, Castellini E, Malferrari D, Castro GR, Sainz-Díaz CI, Brigatti MF, Borsari M (2017) Effective and selective trapping of volatile organic sulfur derivatives by montmorillonite intercalated with a μ-oxo Fe(III)-phenanthroline complex. Appl Mater Interfaces 9(1):1045–1056. doi: 10.1021/acsami.6b11906 CrossRefGoogle Scholar
  3. Bruker (2012) APEX, APEX2, SMART, SAINT. SAINT-Plus. Bruker AXS Inc., Madison, WisconsinGoogle Scholar
  4. Castellini E, Bortolotti CA, Di Rocco G, Bernini F, Ranieri A (2013) Enhancing biocatalysis: the case of cytochrome c unfolded immobilized on kaolinite. Chem Cat Chem 5:1765–1768. doi: 10.1002/cctc.201200876 Google Scholar
  5. Chu DQ, Xu JQ, Duan LM, Wang TG, Tang AQ, Ye L (2001) Hydrothermal synthesis of a two-dimensional coordination polymer [Fe(phen)(µ6-bta)(1/2)](n) (bta = benzene-1,2,4,5-tetracarboxylate, phen = 1,10-phenanthroline). Eur J Inorg Chem 2001:1135–1137. doi: 10.1002/1099-0682(200105)2001:5<1135::AID-EJIC1135>3.0.CO;2-G CrossRefGoogle Scholar
  6. Healy PC, Patrick JM, White AH (1984) Crystal Structure of μ-Oxo-bis-fac-[triaqua-1,10 phenanthrolineiron(111)] Tetrakis(nitrate) Monohydrate. Aust J Chem 37:1405–1410. doi: 10.1071/CH9841405 CrossRefGoogle Scholar
  7. Holland TJB, Redfern SAT (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineral Mag 61:65–77 (ISSN: 0026-461X) CrossRefGoogle Scholar
  8. Huebschle CB, Sheldrick GM, Dittrich B (2011) ShelXle: a Qt graphical user interface for SHELXL. J Appl Crystallogr 44:1281–1284. doi: 10.1107/S0021889811043202 CrossRefGoogle Scholar
  9. Jian FF, Xiao HL, Wang QX, Jiao K (2005) Synthesis, structure and property of oxo-bridged binuclear iron(III) complex [Fe(phen)(H2O)3]2O·2SO4. Struct Chem 16:117–122. doi: 10.1007/s11224-005-2829-6 CrossRefGoogle Scholar
  10. Odoko M, Okabe N (2005) μ-Oxo-κ2O:O-bis[bis(1,10-phenanthroline-κ2 N, N′)-(sulfato-κO)iron(III)] octahydrate. Acta Crystallogr E61:m587–m589. doi: 10.1107/S1600536805005660 Google Scholar
  11. Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE, Constantin LA, Zhou X, Burke K (2008) Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett 100:136406. doi: 10.1103/PhysRevLett.100.136406 CrossRefGoogle Scholar
  12. Plowman JE, Loehr TM, Schauer CK, Anderson OP (1984) Crystal and molecular structure of the (μ-oxo)bis[aquobis(phenanthroline)iron(III)] complex, a Raman spectroscopic model for the binuclear iron site in hemerythrin and ribonucleotide reductase. Inorg Chem 23(22):3553–3559. doi: 10.1021/ic00190a024 CrossRefGoogle Scholar
  13. Ranieri A, Bernini F, Bortolotti CA, Bonifacio A, Sergo V, Castellini E (2011) pH-dependent peroxidase activity of yeast cytochrome c and its triple mutant adsorbed on kaolinite. Langmuir 27(10683):10690. doi: 10.1021/la201876k Google Scholar
  14. Ranieri A, Bernini F, Bortolotti CA, Castellini E (2012) The Met80Ala point mutation enhances the peroxidase activity of immobilized cytochrome c. Catal Sci Technol 2:2206–2210. doi: 10.1039/C2CY20347B CrossRefGoogle Scholar
  15. Renner B, Lehmann G (1986) Correlation of angular and bond length distortions in TO4 units in crystals. Z Kristallogr 175(1–2):43–59. doi: 10.1524/zkri.1986.175.1-2.43 Google Scholar
  16. Sainz-Díaz CI, Francisco-Márquez M, Vivier-Bunge A (2010) Molecular structure and spectroscopic properties of polyaromatic heterocycles by first principle calculations: spectroscopic shifts with the adsorption of thiophene on phyllosilicate surface. Theor Chem Acc 125:83–95. doi: 10.1007/s00214-009-0666-1 CrossRefGoogle Scholar
  17. Schilt AA (1969) Applications of 1,10-Phenanthroline and related compounds. Pergamon Press, Oxford, p 193Google Scholar
  18. Sheldrick GM (1990) Phase annealing in SHELX-90: direct methods for larger structures. Acta Cryst A46:467–473. doi: 10.1107/S0108767390000277 CrossRefGoogle Scholar
  19. Sheldrick GM (2008) A short history of SHELX. Acta Cryst A64:112–122. doi: 10.1107/S0108767307043930 CrossRefGoogle Scholar
  20. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The SIESTA method for ab initio order N materials simulation. J Phys Condens Matter 14:2745–2779. doi: 10.1088/0953-8984/14/11/302 CrossRefGoogle Scholar
  21. Wang QX, Jiao K, W Sun, Jian FF, Hu X (2006) Binding of an Oxo-Bridged Dinuclear Iron(III) Complex{[Fe(phen)(H2O)3]2O}(SO4)2 to DNA and its recognition of single- and double-stranded DNA as determined by electrochemical studies. Eur J Inorg Chem 2006:1838–1845. doi: 10.1002/ejic.200500829 CrossRefGoogle Scholar
  22. Zhao J, Zhang H, Ng SW (2006) μ-Oxo-di-μ-sulfato-bis-[aqua-(1,10-phenanthroline-κ2 N, N′)iron(III)] tetra-hydrate. Acta Cryst E62:m1890–m1891. doi: 10.1107/S1600536806027292 Google Scholar

Copyright information

© Accademia Nazionale dei Lincei 2017

Authors and Affiliations

  1. 1.Department of Chemical and Geological Sciences– University of Modena and Reggio EmiliaModenaItaly
  2. 2.Instituto Andaluz de Ciencias de la Tierra (IACT) CSIC- University of GranadaGranadaSpain

Personalised recommendations