Skip to main content
Log in

Enzyme catalysis: the case of the prostate-specific antigen

  • Concepts in Catalysis
  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

Proteases are a class of enzymes that lower the activation energy for the cleavage of the peptide bonds by polarizing the carbonyl group. The catalytic mechanism of proteases is characterized by the formation and the dissociation of a tetrahedral acyl-intermediate. The rate-limiting step in catalysis is either the acylation process (leading to the release of the newly formed \( {-}{\text{NH}}_{3}^{ + } \) terminal) or the subsequent deacylation step (leading to the release of the newly formed –COO terminal). As a case, the detailed kinetic analysis for the hydrolysis of the chromogenic substrate Mu-His-Ser-Ser-Lys-Leu-Gln-AMC (wherein Mu is the morpholinocarbonyl protecting group and AMC is the 7-amino-4-methylcoumarin chromophoric group) by the prostate-specific antigen (PSA) is reported here. The pH dependence of the catalytic parameters clearly indicates the existence of protonation/deprotonation processes involving (at least) two ionizing groups in the proximity of the active site. In view of the physio-pathological relevance of PSA in prostate diseases (including cancer), the detailed analysis of the catalytic parameters opens new scenarios for the design of selective inhibitors, which might influence the “in vivo” activity of this protease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PSA:

Prostate-specific antigen

References

  • Antonini E, Ascenzi P (1981) The mechanism of trypsin catalysis at low pH. Proposal for a structural model. J Biol Chem 256:12449–12455

    CAS  Google Scholar 

  • Ascenzi P, Menegatti E, Guarneri M, Bortolotti F, Antonini E (1982) Catalytic properties of serine proteases. 2. Comparison between human urinary kallikrein and human urokinase, bovine β-trypsin, bovine thrombin, and bovine α-chymotrypsin. Biochemistry 21:2483–2490

    Article  CAS  Google Scholar 

  • Ascenzi P, Amiconi G, Bolognesi M, Guarneri M, Menegatti E, Antonini E (1984) The pH dependence of pre-steady-state and steady-state kinetics for the porcine pancreatic β-kallikrein-B-catalyzed hydrolysis of N-α-carbobenzoxy-l-arginine p-nitrophenyl ester. Biochim Biophys Acta 785:75–80

    Article  CAS  Google Scholar 

  • Ascenzi P, Menegatti E, Bolognesi M, Guarneri M, Amiconi G (1986) Catalytic properties of bovine α-thrombin: a comparative steady-state and pre-steady-state study. Biochim Biophys Acta 871:319–323

    Article  CAS  Google Scholar 

  • Ascenzi P, Menegatti E, Guarneri M, Amiconi G (1989) Trypsin-like serine proteinase action: determination of the catalytic parameters K S, k +2 and k +3 under conditions where the substrate exceeds the enzyme concentration. Biochim Biophys Acta 998:210–214

    Article  CAS  Google Scholar 

  • Aureli L, Gioia M, Cerbara I, Monaco S, Fasciglione GF, Marini S, Ascenzi P, Topai A, Coletta M (2008) Structural bases for substrate and inhibitor recognition by matrix metalloproteinases. Curr Med Chem 15:2192–2222

    Article  CAS  Google Scholar 

  • Avgeris M, Scorilas A (2016) Kallikrein-related peptidases (KLKs) as emerging therapeutic targets: focus on prostate cancer and skin pathologies. Expert Opin Ther Targets 20:801–818

    Article  CAS  Google Scholar 

  • Cereda V, Formica V, Menghi A, Pellicori S, Roselli M (2015) Kallikrein-related peptidases targeted terapies in prostate cancer: perspectives and challenges. Expert Opin Investig Drugs 24:929–947

    Article  CAS  Google Scholar 

  • Denmeade SR, Lou W, Lövgren J, Malm J, Lilja H, Isaacs JT (1997) Specific and efficient peptide substrates for assaying the proteolytic activity of prostate-specific antigen. Cancer Res 57:4924–4930

    CAS  Google Scholar 

  • Denmeade SR, Sokoll LJ, Chan DW, Khan SR, Isaacs JT (2001) Concentration of enzymatically active prostate-specific antigen (PSA) in the extracellular fluid of primary human prostate cancers and human prostate cancer xenograft models. Prostate 48:1–6

    Article  CAS  Google Scholar 

  • Gioia M, Fasciglione GF, Monaco S, Iundusi R, Sbardella D, Marini S, Tarantino U, Coletta M (2010) pH dependence of the enzymatic processing of collagen I by MMP-1 (fibroblast collagenase), MMP-2 (gelatinase A) and MMP-14 ectodomain. J Biol Inorg Chem 15:1219–1232

    Article  CAS  Google Scholar 

  • Ilic D, Neuberger MM, Djulbegovic M, Dahm P (2013) Screening for prostate cancer: an updated Cochrane systematic review. BJU Int 107:882–891

    Article  Google Scholar 

  • LeBeau AM, Singh P, Isaacs JT, Denmeade SR (2009) Prostate-specific antigen is a “chymotrypsin-like” serine protease with unique P1 substrate specificity. Biochemistry 48:3490–3496

    Article  CAS  Google Scholar 

  • Lilja H (1985) A kallikrein-like serine protease in prostatic fluid cleaves the predominant seminal vesicle protein. J Clin Investig 76:1899–1903

    Article  CAS  Google Scholar 

  • Mancek-Keber M (2014) Inflammation-mediating proteases: structure, function in (patho) physiology and inhibition. Protein Pept Lett 21:1209–1229

    CAS  Google Scholar 

  • Menez R, Michel S, Muller BH, Bossus M, Ducancel F, Jolivet-Reynaud C, Stura EA (2008) Crystal structure of a ternary complex between human prostate-specific antigen, its substrate acyl intermediate and an activating antibody. J Mol Biol 376:1021–1033

    Article  CAS  Google Scholar 

  • Singh P, LeBeau AM, Lilja H, Denmeade SR, Isaacs JT (2009) Molecular insights into substrate specificity of prostate specific antigen through structural modeling. Proteins 77:984–993

    Article  CAS  Google Scholar 

  • Sotiropoulou G, Pampalakis G, Diamandis EP (2009) Functional roles of human kallikrein-related peptidases. J Biol Chem 284:32989–32994

    Article  CAS  Google Scholar 

  • Tomao L, Sbardella D, Gioia M, Marini S, Ascenzi P, Coletta M (2014) Characterization of the prostate-specific antigem (PSA) catalytic mechanism: a pre-steady-state and steady-state study. PLoS ONE 7:e102470

    Article  Google Scholar 

  • Watt KW, Lee PJ, M’Timkulu T, Chan WP, Loor R (1986) Human prostate-specific antigen: structural and functional similarity with serine proteases. Proc Natl Acad Sci USA 83:3166–3170

    Article  CAS  Google Scholar 

  • Webber MM, Waghray A, Bello D (1995) Prostate-specific antigen, a serine protease, facilitates human prostate cancer cell invasion. Clin Cancer Res 1:1089–1094

    CAS  Google Scholar 

  • Williams SA, Singh P, Isaacs JT, Denmeade SR (2007) Does PSA play a role as a promoting agent during the initiation and/or progression of prostate cancer? Prostate 67:312–329

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Italian Ministry of University and Research (MIUR 265 PRIN 200993WWF_003 to M.C. and CLA 2014 to P.A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Coletta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gioia, M., Tomao, L., Sbardella, D. et al. Enzyme catalysis: the case of the prostate-specific antigen. Rend. Fis. Acc. Lincei 28 (Suppl 1), 229–237 (2017). https://doi.org/10.1007/s12210-017-0602-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-017-0602-6

Keywords

Navigation