Skip to main content
Log in

The discovery and evolution of metallocene-based olefin polymerization catalysts

  • Concepts in Catalysis
  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

The development of the homogeneous metallocene/methylaluminoxane catalyst for the polymerization of olefin has widely increased the possibilities in controlling the polymer composition, polymer structure, tacticity and special properties with high precision compared to the heterogeneous Ziegler–Natta and Phillips catalysts. Metallocene catalysts allow the synthesis of isotactic, isoblock, syndiotactic, stereoblock or atactic polymers, as well as polyolefin composite materials with superior properties and low content of extractables. The homogeneous character of metallocene-based catalysts leads to a better understanding of the mechanism of the olefin polymerization and allows the synthesis of optically active olefin oligomers using chiral transition metal complexes. These single-site catalysts are able to copolymerize ethene and propene with short- and long-chained α-olefins, cyclic olefins, or polar vinyl monomers such as ethers, alcohols or esters. Such copolymers are suitable for blends of polyolefins with polyethers and other polar polymers because of an excellent adhesion of the two polymers. In the future, polyolefin nanocomposites and tailored copolymers open up the approach to new classes of materials with great property combinations such as improved stiffness, high gas barrier properties, significant flame retardancy, and high crystallization rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bochmann M (2010) The chemistry of catalyst activation: the case of group 4 polymerization catalysts. Organometallics 29:4711–4740

    Article  CAS  Google Scholar 

  • Boggioni L, Tritto I (2014) Propene-cycloolefin polymerization. Polyolefins J 1:61–75

    Google Scholar 

  • Coates GW (2000) Precise control of polyolefin stereochemistry using single-site metal catalysts. Chem Rev 100:1223–1252

    Article  CAS  Google Scholar 

  • Delferro M, Marks TJ (2011) Multinuclear olefin polymerization catalysts. Chem Rev 111:2450–2485

    Article  CAS  Google Scholar 

  • Ewen JA, Jones RL, Razavi A, Ferrara JP (1988) Syndiospecific propylene polymerization with group IVB metallocenes. J Am Chem Soc 110:6255–6256

    Article  CAS  Google Scholar 

  • Frediani M, Bianchini C, Kaminsky W (2006) Low density polyethylene by tandem catalysis with single site Ti(IV)/Co(II) catalysts. Kinet Catal 47:207–212

    Article  CAS  Google Scholar 

  • Hlatky GG (2000) Heterogeneous single-site catalysts for olefin polymerization. Chem Rev 100:1347–1376

    Article  CAS  Google Scholar 

  • Kaminsky W (2012) Discovery of methylaluminoxane as cocatalyst for olefin polymerization. Macromolecules 45:3289–3297

    Article  CAS  Google Scholar 

  • Kaminsky W (Ed) (2013) Polyolefins: 50 years after Ziegler and Natta. Vol I and II, Advances in Polymer Science 257 and 258. Springer, Heidelberg

  • Kaminsky W (2014) Metallocene based polyolefin nanocomposites. Materials 7:5069–5108

    Article  Google Scholar 

  • Kaminsky W, Fernandez M (2008) New polymers by copolymerization of olefins with bio oil components. Eur J Lipid Sci Technol 110:841–845

    Article  CAS  Google Scholar 

  • Kaminsky W, Fernandez M (2015) Discovery and development of metallocene based polyolefins with special properties. Polyolefins J 2:1–16

    Google Scholar 

  • Kaminsky W, Luinstra GA (2010) Olefin polymerization by metallocene catalysis. In: Reschetilowski W, Hönle (eds) Edition Ostwald: on catalysis, vol 2. VWB, Berlin, pp 186–214

  • Kaminsky W, Külper K, Brintzinger HH, Wild FR (1985) Polymerization of propene and butene with a chiral zirconocene and methylalumoxane as cocatalyst. Angew Chem Int Ed Engl 24:507–508

    Article  Google Scholar 

  • Kaminsky W, Ahlers A, Möller-Lindenhof N (1989) Asymmetric oligomerization of propene and 1-butene with a zirconocene/alumoxane catalyst. Angew Chem Int Ed Engl 28:1216–1218

    Article  Google Scholar 

  • Kaminsky W, Funck A, Klinke C (2008) In-situ polymerization of olefins on nanoparticles or fibers by metallocene catalysts. Top Catal 48:84–90

    Article  CAS  Google Scholar 

  • Kaminsky W, Boggioni L, Tritto I (2012) Cycloolefin polymerization. A Comprehensive Ref: Matyjaszewski K, Möller M (eds) Polym Sci 3:843–873

  • Kawai K, Fujita T (2009) Metal catalysts in olefin polymerization. Top Organomet Chem 26:3–46

    Article  CAS  Google Scholar 

  • Lozano K, Bonilla-Rios J, Barrera EV (2001) Nanofiber reinforced thermoplastic composites: thermoanalytic and mechanical analysis. J Appl Polym Sci 80:1162–1172

    Article  CAS  Google Scholar 

  • McNally T, Poetschke P (eds) (2011) Polymer-carbon nanotube composites: preparation, properties, and applications. Woodhead, Cambridge

    Google Scholar 

  • Nomura K, Liu KJ (2011) Half-titanocenes for precise olefin polymerization: effect of ligand substituents and some mechanistic aspects. Dalton Trans 40:7666–7682

    Article  CAS  Google Scholar 

  • Pino P, Cioni P, Wei J (1987) Asymmetric hydrooligomerization. J Am Chem Soc 109:6189–6191

    Article  CAS  Google Scholar 

  • PlasticsEurope (2015) Production of plastics worldwide. Statistica. http://www.plasticseurope.org

  • Razavi A (2013) Syndiotactic polypropylene: discovery, development, and industrialization via bridged metallocene catalysts. Adv Polym Sci 258:43–116

    Article  CAS  Google Scholar 

  • Rieger B, Baugh LS, Kacker S, Striegler S (eds) (2003) Late transition metal polymerization catalysis. Wiley-VCH, Weinheim

    Google Scholar 

  • Säppälä J, Kokko E, Lehmus P, Malmberg AP, Hakala K, Lipponen S, Löfgren B (2013) Functional polyolefins through polymerization by using bis(indenyl)zirconium catalysts. Adv Polym Sci 258:179–232

    Article  Google Scholar 

  • Schäfer A, Karl E, Zsolnai L, Huttner G, Brintzinger HH (1987) ansa-Metallocene derivates. XII Diastereomeric derivatization and enantiomer separation of ethylenebis(tetrahydroindenyl)titanium and zirconium dichlorides. J Organomet Chem 328:87–99

    Article  Google Scholar 

  • Scheirs J, Kaminsky W (eds) (2000) Metallocene-based polyolefins: preparation, properties, and technology, vols 1 and 2. Wiley, Chichester

  • Sinn H et al (1995) The role of MAO activators. In: Fink G, Mülhaupt P, Brintzinger HH (eds) Ziegler catalysts. Springer, Berlin, pp 57–82

    Google Scholar 

  • Stadler FJ, Arikan-Conley B, Kaschta J, Kaminsky W, Münstedt H (2011) Synthesis and characterization of novel ethylene-graft-ethylene/propylene copolymers. Macromolecules 44:5053–5063

    Article  CAS  Google Scholar 

  • Wild FR, Zsolnai L, Huttner G, Brintzinger HH (1982) Ansa-metallocene derivates.IV. Synthesis and molecular structure of chiral ansa-titanocene derivates with bridged tetrahydroindenyl ligands. J Organomet Chem 232:233–247

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Kaminsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaminsky, W. The discovery and evolution of metallocene-based olefin polymerization catalysts. Rend. Fis. Acc. Lincei 28 (Suppl 1), 87–95 (2017). https://doi.org/10.1007/s12210-016-0588-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-016-0588-5

Keywords

Navigation