Advertisement

Rendiconti Lincei

, Volume 28, Issue 1, pp 25–33 | Cite as

Sources of atmospheric nitrous acid (HONO) in the European High Arctic

  • Francesca SpataroEmail author
  • Antonietta Ianniello
  • Rosamaria Salvatori
  • Marianna Nardino
  • Giulio Esposito
  • Mauro Montagnoli
Environmental Changes in the Arctic

Abstract

The atmospheric concentrations of nitrous acid (HONO) have been measured from 15 to 25 April 2010 at Ny-Ålesund (Svalbard). The results were discussed from the stand point of diurnal variations and meteorological effects. No clear diurnal cycle for the HONO concentrations was observed during our measurements. HONO concentration showed strong and significant correlation with both nitrogen dioxide (NO2) and relative humidity (RH), suggesting the importance of heterogeneous processes as HONO source. The strong correlation between HONO and HONO to NO2 ratio suggested the occurrence of heterogeneous conversion from NO2 to HONO, or HONO direct emission processes, or both. We used a pseudo steady state approach, including homogeneous and heterogeneous reactions and the emissive fluxes of HONO from the snow surface. It allowed accounting for all observed HONO concentrations only from small period. Except on them, about 28 % of the measured HONO was explained. The results showed that the heterogeneous conversion of NO2 on humid surface was a major HONO source, especially during the night. However, the results indicated the occurrence of a daytime HONO source whose strength was enough to compete with the HONO photolysis.

Keywords

Nitrous acid Nitrogen oxides Atmospheric chemistry Air–snow exchanges 

Notes

Acknowledgments

We thank Mr. Roberto Sparapani for his precious help and suggestions during the field experimental activities.

References

  1. Alicke B, Platt U, Stutz J (2002) Impact of nitrous acid photolysis on the total hydroxyl radical budget during the limitation of oxidant production/pianura padana produzione di ozono study in Milan. J Geophys Res 107:8196. doi: 10.1029/2000JD000075 CrossRefGoogle Scholar
  2. Alicke B, Geyer A, Hofzumahaus A, Holland F, Konrad S, Patz HW et al (2003) OH formation by HONO photolysis during the BERLIOZ experiment. J Geophys Res 108:8247–8264. doi: 10.1029/2001JD000579 CrossRefGoogle Scholar
  3. Amoroso A, Beine HJ, Sparapani R, Nardino M, Allegrini I (2006) Observation of coinciding arctic boundary layer ozone depletion and snow surface emissions of nitrous acid. Atmos Environ 40:1949–1956CrossRefGoogle Scholar
  4. Amoroso A, Domine F, Esposito G, Morin S, Savarino J, Nardino M, Montagnoli M, Bonneville JM, Clement JC, Ianniello A, Beine HJ (2010) Microorganisms in dry polar snow are involved in the exchanges of reactive nitrogen species with the atmosphere. Environ Sci Technol 44:714–719CrossRefGoogle Scholar
  5. Anastasio C, Chu L (2009) Photochemistry of nitrous acid (HONO) and nitrous acidium ion (H2ONO+) in aqueous solution and ice. Environ Sci Technol 43:1108–1114CrossRefGoogle Scholar
  6. Atkinson R, Baulch DL, Cox RA, Crowley JN, Hampson JRF, Hynes RG et al (2004) Evaluated kinetic and photochemical data for atmospheric chemistry: volume I-gas phase reactions of Ox, HOx, NOx and SOx species. Atmos Chem Phys 4:1461–1738CrossRefGoogle Scholar
  7. Bartels-Rausch T, Brigante M, Elshorbany YF, Ammann M, D’Anna B, George C, Stemmler K, Ndour M, Kleffmann J (2010) Humic acid in ice: photo-enhanced conversion of nitrogen dioxide into nitrous acid. Atmos Environ 44:5443–5450CrossRefGoogle Scholar
  8. Beine HJ, Engardt M, Jaffe DA, Hov Ø, Holmén K, Stordal F (1996) Measurements of NOx and aerosol particles at Ny-Ålesund, Zeppelin mountain station on Svalbard: influence of regional and local pollution sources. Atmos Environ 30:1067–1079CrossRefGoogle Scholar
  9. Beine HJ, Jaffe DA, Stordal F, Engardt M, Solberg S, Schmidbauer N, Holmen K (1997) NOx during ozone depletion events in the arctic troposphere a Ny-Ålesund. Svalbard. Tellus 49B:556–565CrossRefGoogle Scholar
  10. Beine HJ, Allegrini I, Sparapani R, Ianniello A, Valentini F (2001a) Three years of springtime trace gas and particle measurements at Ny-Ålesund, Svalbard. Atmos Environ 35:3645–3658CrossRefGoogle Scholar
  11. Beine HJ, Argentini S, Maurizi A, Mastrantonio G, Viola A (2001b) The local wind field at Ny-Ålesund and the Zeppelin mountain at Svalbard. Meteorol Atmos Phys 78:107–113CrossRefGoogle Scholar
  12. Beine HJ, Honrath RE, Dominè F, Simpson WR, Fuentes JD (2002) NOx during background and ozone depletion periods at alert: fluxes above the snow surface. J Geophys Res 107:4584CrossRefGoogle Scholar
  13. Beine HJ, Dominè F, Ianniello A, Nardino M, Allegrini I, Tenilä K, Hillamo R (2003) Fluxes of nitrates between snow surfaces and the atmosphere in the European high Arctic. Atmos Chem Phys 3:335–346CrossRefGoogle Scholar
  14. Beine HJ, Amoroso A, Esposito G, Sparapani R, Ianniello A, Georgiadis T, Nardino M, Bonasoni P, Cristofanelli P, Dominé F (2005) Deposition of atmospheric nitrous acid on alkaline snow surfaces. Geophys Res Lett 32:L10808CrossRefGoogle Scholar
  15. Beine HJ, Amoroso A, Dominé F, King MD, Nardino M, Ianniello A, France JL (2006) Surprisingly small HONO emissions from snow surfaces at Browning Pass, Antarctica. Atmos Chem Phys 6:2569–2580CrossRefGoogle Scholar
  16. Beine HJ, Coloussi AJ, Amoroso A, Esposito G, Montagnoli M, Hoffmann MR (2008) HONO emissions from snow surfaces. Environ Res Lett 3:045005CrossRefGoogle Scholar
  17. Björkman MP, Vega CP, Kühnel R, Spataro F, Ianniello A, Esposito G, Kaiser J, Marca A, Hodson A, Isaksson E, Roberts TJ (2014) Nitrate postdeposition processes in Svalbard surface snow. J Geophys Res Atmos 119:12953–12976CrossRefGoogle Scholar
  18. Boxe CS, Colussi AJ, Hoffmann MR, Murphy JG, Wooldridge PJ, Bertram TH, Cohen RC (2005) Photochemical production and release of gaseous NO2 from nitrate-doped water ice. J Phys Chem A 109:8520–8525CrossRefGoogle Scholar
  19. Dibb JE, Arsenault M (2002) Shouldn’t snowpacks be sources of monocarboxylic acids? Atmos Environ 36:2513–2522CrossRefGoogle Scholar
  20. Domine F, Albert M, Huthwelker T, Jacobi HW, Kokhanovsky AA, Lehning M, Picard G, Simpson WR (2008) Snow physics as relevant to snow photochemistry. Atmos Chem Phys 8:171–208CrossRefGoogle Scholar
  21. Febo A, Perrino C, Allegrini I (1996) Measurement of nitrous acid in Milan, Italy, by DOAS and diffusion denuders. Atmos Environ 30:3599–3609CrossRefGoogle Scholar
  22. Finlayson-Pitts BJ, WingenL M, Sumner AL, Syomin D, Ramazan KA (2003) The heterogeneous hydrolysis of NO2 in laboratory systems and in outdoor and indoor atmospheres: an integrated mechanism. Phys Chem Chem Phys 5:223–242CrossRefGoogle Scholar
  23. George C, Strekowski RS, Kleffmann J, Stemmler K, Ammann M (2005) Photoenhanced uptake of gaseous NO2 on solid organic compounds: a photochemical source of HONO. Faraday Discuss 130:195–211CrossRefGoogle Scholar
  24. Giardi F, Beccagli S, Traversi R, Frosini D, Severi M, Caiazzo L, Ancillotti C, Cappelletti D, Moroni B, Grotti M, Bazzano A, Lupi A, Mazzola M, Vitale V, Abollino O, Ferrero L, Bolzacchini E, Viola A, Udisti R (2016) Size distribution and ion composition of aerosol collected at Ny-Ålesund in the spring–summer field campaign 2013. Rend Fis Acc Lincei 27 (suppl 1):47–58. doi: 10.1007/s12210-016-0529-3 CrossRefGoogle Scholar
  25. Grannas AM, Jones AE, Dibb J, Ammann M, Anastasio C, Beine HJ, Bergin M, Bottenheim J, Boxe CS, Carver G, Chen G, Crawford JH, Dominé F, Frey MM, Guzman MI, Heard DE, Helmig D, Hoffmann MR, Honrath RE, Huey LG, Hutterli M, Jacobi HW, Klán P, Lefer B, McConnell J, Plane J, Sander R, Savarino J, Shepson PB, Simpson WR, Sodeau JR, Von Glasow R, Weller R, Wolff EW, Zhu T (2007) An overview of snow photochemistry: evidence, mechanisms and impacts. Atmos Chem Phys 7:4329–4373CrossRefGoogle Scholar
  26. Hausmann M, Platt U (1994) Spectroscopic measurement of bromide oxide and ozone in the High Arctic during polar sunrise experiment. J Geophys Res 99:399–425CrossRefGoogle Scholar
  27. Heland J, Kleffmann J, Kurtenbach R, Wiesen P (2001) A new instrument to measure gaseous nitrous acid (HONO) in the atmosphere. Environ Sci Technol 35:3207–3212CrossRefGoogle Scholar
  28. Hellebust S, Roddis T, Sodeau J (2007) A potential role of the nitroacidium ion on HONO emissions from the snowpack. J Phys Chem A 111:1167–1171CrossRefGoogle Scholar
  29. Honrath RE, Peterson MC, Dziobak MP, Dibb JE, Arsenault MA, Green SA (2000) Release of NOx from sunlight irradiated midlatitude snow. Geophys Res Lett 27:2237–2240CrossRefGoogle Scholar
  30. Honrath RE, Lu Y, Peterson MC, Dibb JE, Arsenault MA, Cullen NJ, Steffen K (2002) Vertical fluxes of NOx, HONO, and HNO3 above the snowpack at Summit, Greenland. Atmos Environ 36:2629–2640CrossRefGoogle Scholar
  31. Huang G, Zhou X, Deng G, Qiao H, Civerolo K (2002) Measurements of atmospheric nitrous acid and nitric acid. Atmos Environ 364:2225–2235CrossRefGoogle Scholar
  32. Ianniello A, Beine HJ, Sparapani R, Di Bari F, Allegrini I, Fuentes JD (2002) Denuder measurements of gas and aerosol species above Arctic snow surfaces at alert 2000. Atmos Environ 36:5299–5309CrossRefGoogle Scholar
  33. Ianniello A, Beine HJ, Landis MS, Stevens RK, Esposito G, Amoroso A, Allegrini I (2007) Comparing field performances of denuder techniques in the high Arctic. Atmos Environ 41:1604–1615CrossRefGoogle Scholar
  34. Ianniello A, Spataro F, Salvatori R et al (2016) Air-snow exchange of reactive nitrogen species at Ny-Ålesund, Svalbard (Arctic). Rend Fis Acc Lincei 27 (suppl 1):33–45. doi: 10.1007/s12210-016-0536-4 CrossRefGoogle Scholar
  35. Jones AE, Weller R, Wolff EW, Jacobi H-W (2000) Speciation and rate of photochemical NO and NO2 production in Antarctic snow. Geophys Res Lett 27:345–348CrossRefGoogle Scholar
  36. Kleffmann J (2007) Daytime sources of nitrous acid (HONO) in the atmospheric boundary layer. Chem Phys Chem 8:1137–1144Google Scholar
  37. Kleffmann J, Gavriloaiei T, Hofzumahaus A, Holland F, Koppmann R, Rupp L, Schlosser E, Siese M, Wahner A (2005) Daytime formation of nitrous acid: a major source of OH radicals in a forest. Geophys Res Lett 32:L05818CrossRefGoogle Scholar
  38. Li X, Brauers T, Häseler R, Bohn B, Fuchs H, Hofzumahaus A et al (2012) Exploring the atmospheric chemistry of nitrous acid (HONO) at a rural site in Southern China. Atmos Chem Phys 12:1497–1513CrossRefGoogle Scholar
  39. Liao W, Case AT, Mastromarino J, Tan D, Dibb JE (2006) Observations of HONO by laser-induced fluorescence at the South Pole during ANTCI2003. Geophys Res Lett 33:L09810CrossRefGoogle Scholar
  40. Ma J, Liu Y, Han C, Ma Q, Liu C, He H (2013) Review of heterogeneous photochemical reactions of NOy on aerosol-A possible daytime source of nitrous acid (HONO) in the atmosphere. J Environ Sci 25:326–334CrossRefGoogle Scholar
  41. Mazzola M, Viola AP, Lanconelli C, Vitale V (2016) Atmospheric observations at the Amundsen-Nobile Climate Change Tower in Ny-Ålesund, Svalbard. Rend Fis Acc Lincei 27 (suppl 1):7–18. doi: 10.1007/s12210-016-0540-8 CrossRefGoogle Scholar
  42. McCabe JR, Boxe CS, Colussi AJ, Hoffmann MR, Thiemens MH (2005) Oxygen isotopic fractionation in the photochemistry of nitrate in water and ice. J Geophys Res Atmos 110:D15310. doi: 10.1029/2004JD005484 CrossRefGoogle Scholar
  43. Pinzer BR, Kerbrat M, Huthwelker T, Gäggeler HW, Schneebeli M, Ammann M (2010) Diffusion of NOx and HONO in snow: a laboratory study. J Geophys Res Atmos 115:D03304CrossRefGoogle Scholar
  44. Sozzi R, Favaron M, Georgiadis T (1998) Method for estimation of surface roughness and similarity function of wind speed vertical profile. J Appl Meteorol 37:461–469CrossRefGoogle Scholar
  45. Spataro F, Ianniello A (2014) Sources of atmospheric nitrous acid: state of the science, current research needs, and future prospects. J Air Waste Manag Assoc 64:1232–1250CrossRefGoogle Scholar
  46. Spataro F, Ianniello A, Esposito G, Allegrini I, Zhu T, Hu M (2013) Occurrence of atmospheric nitrous acid in the urban area of Beijing (China). Sci Total Environ 447:210–224CrossRefGoogle Scholar
  47. Stemmler K, Ammann M, Donders C, Kleffmann J, George C (2006) Photosensitized reduction of nitrogen dioxide on humic acid as source of nitrous acid. Nature 440(195–198):2006. doi: 10.1038/nature04603 Google Scholar
  48. Udisti R, Bazzano A, Becagli S, Bolzacchini E, Caiazzo L, Cappelletti D, Ferrero L, Frosini D, Giardi F, Grotti M, Lupi A, Malandrino M, Mazzola M, Moroni B, Severi M, Traversi R, Viola A, Vitale V (2016) Sulfate source apportionment in the Ny-Ålesund (Svalbard Islands) Arctic aerosol. Rend Fis Acc Lincei 27 (suppl 1):85–94. doi: 10.1007/s12210-016-0517-7 CrossRefGoogle Scholar
  49. Villena G, Wiesen P, Cantrell CA, Flocke F, Fried A, Hall SR, Knapp D, Kosciuch E, Mauldin RL III, McGrath JA, Montzka D, Richter D, Ullmann K, Walega J, Weibring P, Weinheimer A, Staebler RM, Liao J, Huey LG, Kleffmann J (2011) Nitrous acid (HONO) during polar spring in Barrow, Alaska: A net source of OH radicals? J Geophys Res 116:D00R07CrossRefGoogle Scholar
  50. Vogel B, Vogel H, Kleffmann J, Kurtenbach R (2003) Measured and simulated vertical profiles of nitrous acid—part II. Model simulations and indications for a photolytic source. Atmos Environ 37:2957–2966CrossRefGoogle Scholar
  51. Volkamer R, Sheehy P, Molina LT, Molina MJ (2010) Oxidative capacity of the Mexico City atmosphere—part 1: a radical source perspective. Atmos Chem Phys 10:6969–6991CrossRefGoogle Scholar
  52. Wong KW, Oh H-J, Lefer BL, Rappenglück B, Stutz J (2011) Vertical profiles of nitrous acid in the nocturnal urban atmosphere of Houston, TX. Atmos Chem Phys 11:3595–3609CrossRefGoogle Scholar
  53. Yang J, Honrath RE, Peterson MC, Dibb JE, Sumner AL, Shepson PB, Frey M, Jacobi HW, Swanson A, Blake N (2002) Impacts of snowpack emissions on deduced levels of OH and peroxy radicals at Summit, Greenland. Atmos Environ 36:2523–2534CrossRefGoogle Scholar
  54. Zhou X, Quiao H, Deng G, Civerolo K (1999) A method for the measurement of atmospheric HONO based on DNPH derivatization and HPLC analysis. Environ Sci Technol 33:3672–3679CrossRefGoogle Scholar
  55. Zhou X, Beine HJ, Honrath RE, Fuentes JD, Simpson W, Shepson PB, Bottenheim J (2001) Snowpack photochemical production as a source for HONO in the Arctic boundary layer in spring time. Geophys Res Lett 28:4087–4090CrossRefGoogle Scholar

Copyright information

© Accademia Nazionale dei Lincei 2016

Authors and Affiliations

  • Francesca Spataro
    • 1
    Email author
  • Antonietta Ianniello
    • 1
  • Rosamaria Salvatori
    • 1
  • Marianna Nardino
    • 2
  • Giulio Esposito
    • 1
  • Mauro Montagnoli
    • 1
  1. 1.CNR-Institute of Atmospheric Pollution ResearchRomeItaly
  2. 2.CNR-Institute for BiometeorologyBolognaItaly

Personalised recommendations