Skip to main content
Log in

Inter- and intra-specific variation in movement behaviour of benthic macroinvertebrates from a transitional habitat: a laboratory experiment

  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

The movement behaviour of vagile organisms has long been acknowledged as a key determinant of species distribution and biodiversity patterns. Yet, scant information is available for aquatic invertebrates; in addition, the effects of inter-specific differences in morphology and intra-specific variations in body size have been inadequately investigated. In the present study, the movement behaviour of three crustacean species [Proasellus coxalis and Lekanesphaera hookeri (Isopoda) and Gammarus aequicauda (Amphipoda)] and two gastropod species (Ecrobia ventrosa and Bithynia leachii) dominating the macrobenthic assemblage of a Mediterranean transitional habitat (Giammatteo channel estuary, SE Italy) was analysed under resource-free laboratory conditions. The average path length and speed were determined for individuals encompassing a 16-fold range in body sizes. The scale-independent fractal dimension D was used to quantify the tortuosity of their trajectories. In general, significant differences were observed in movement metrics between crustaceans and gastropods; however, species-specific effects were obscured within each taxonomic group by a strong intra-specific variability. All crustacean species were characterized by a significant negative relationship between body size and path tortuosity; specifically, breaks in the slopes of the regression curve were observed, coinciding with sexual maturation. In contrast, negligible relationships were observed for gastropod species. The results of the study suggest that body size may represent a good predictor of movement behaviour for crustaceans but not for gastropods. Specifically, crucial steps of the biological cycle of amphipods and isopods may reflect on considerable variations in movement metrics. The metabolic and ecological implications of these findings are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723. doi:10.1109/TAC.1974.1100705

    Article  Google Scholar 

  • Alemanno S, Mancinelli G, Basset A (2007a) Detritus processing in tri-trophic food chains: a modelling approach. Int Rev Hydrobiol 92:103–116. doi:10.1002/iroh.200510952

    Article  Google Scholar 

  • Alemanno S, Mancinelli G, Basset A (2007b) Effects of invertebrate patch use behaviour and detritus quality on reed leaf decomposition in aquatic systems: a modelling approach. Ecol Model 205:492–506. doi:10.1016/j.ecolmodel.2007.03.009

    Article  Google Scholar 

  • Alexander CG (1972) Locomotion in the isopod crustacean, Ligia oceanica (Linn.). Comp Biochem Physiol A Physiol 42:1039–1047

    Article  Google Scholar 

  • Angilletta MJ, Roth TC, Wilson RS, Niehaus AC, Ribeiro PL (2008) The fast and the fractalous: speed and tortuosity trade off in running ants. Funct Ecol 22:78–83. doi:10.1111/j.1365-2435.2007.01348.x

    Google Scholar 

  • Boudrias MA (1991) Methods for the study of amphipod swimming: behavior, morphology, and fluid dynamics. Hydrobiologia 223:11–25. doi:10.1007/BF00047624

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, Berlin

    Google Scholar 

  • Carrozzo L, Potenza L, Carlino P, Costantini ML, Rossi L, Mancinelli G (2014) Seasonal abundance and trophic position of the Atlantic blue crab Callinectes sapidus Rathbun 1896 in a Mediterranean coastal habitat. Rend Lincei Sci Fis Nat 25:201–208. doi:10.1007/s12210-014-0297-x

    Article  Google Scholar 

  • Chapperon C, Seuront L (2011) Variability in the motion behaviour of intertidal gastropods: ecological and evolutionary perspectives. J Mar Biol Assoc UK 91:237–244. doi:10.1017/S002531541000007X

    Article  Google Scholar 

  • Chapperon C, Seuront L (2013) Temporal shifts in motion behaviour and habitat use in an intertidal gastropod. J Mar Biol Assoc UK 93:1025–1034. doi:10.1017/S0025315412000756

    Article  Google Scholar 

  • Davies N, Gramotnev G, Seabrook L, Bradley A, Baxter G, Rhodes J, Lunney D, McAlpine C (2013) Movement patterns of an arboreal marsupial at the edge of its range: a case study of the koala. Mov Ecol 1:8. doi:10.1186/2051-3933-1-8

    Article  Google Scholar 

  • de Donno A, Montagna MT, de Rinaldis A, Zonno V, Gabutti G (2002) Microbiological parameters in brackish water pond used for extensive and semi-intensive fish-culture: acquatina. Water Air Soil Pollut 134:205–214. doi:10.1023/a:1014167701854

    Article  Google Scholar 

  • de Nicola Giudici M, Migliore L, Guarino SM (1987) Sensitivity of Asellus aquaticus (L.) and Proasellus coxalis Dollf. (Crustacea, Isopoda) to copper. Hydrobiologia 146:63–69. doi:10.1007/BF00007578

    Article  Google Scholar 

  • Denny M (1980) The role of gastropod pedal mucus in locomotion. Nature 285:160–161. doi:10.1038/285160a0

    Article  Google Scholar 

  • Dickinson MH, Farley CT, Full RJ, Koehl M, Kram R, Lehman S (2000) How animals move: an integrative view. Science 288:100–106. doi:10.1126/science.288.5463.100

    Article  CAS  Google Scholar 

  • Donovan D, Carefoot T (1997) Locomotion in the abalone Haliotis kamtschatkana: pedal morphology and cost of transport. J Exp Biol 200:1145–1153

    Google Scholar 

  • Easton MDL, Misra RK (1988) Mathematical representation of crustacean growth. ICES J Mar Sci 45:61–72. doi:10.1093/icesjms/45.1.61

    Article  Google Scholar 

  • Erlandsson J, Kostylev V (1995) Trail following, speed and fractal dimension of movement in a marine prosobranch, Littorina littorea, during a mating and a nonmating season. Mar Biol 122:87–94. doi:10.1007/BF00349281

    Article  Google Scholar 

  • Farley CT, Glasheen J, McMahon TA (1993) Running springs: speed and animal size. J Exp Biol 185:71–86

    CAS  Google Scholar 

  • Ferreri D (1996) Contributo alla conoscenza di isopodi acquatici, oligocheti, pseudoscorpioni e scorpioni della provincia di Lecce. Thalass Salentina 22:5–25. doi:10.1285/i15910725v22p5

    Google Scholar 

  • Flierl G, Grunbaum D, Levin S, Olson D (1999) From individuals to aggregations: the interplay between behavior and physics. J Theor Biol 196:397–454. doi:10.1006/jtbi.1998.0842

    Article  CAS  Google Scholar 

  • Gaston KJ (2000) Global patterns in biodiversity. Nature 405:220–227. doi:10.1038/35012228

    Article  CAS  Google Scholar 

  • Glazier DS (2005) Beyond the ‘3/4-power law’: variation in the intra-and interspecific scaling of metabolic rate in animals. Biol Rev 80:611–662. doi:10.1017/S1464793105006834

    Article  Google Scholar 

  • Hartnoll RG (1982) Growth. In: Abele LG (ed) The biology of Crustacea: embryology, morphology, and genetics, vol 2. Academic Press, New York, pp 111–196

    Google Scholar 

  • Houlihan DF, Innes AJ (1982) Oxygen consumption, crawling speeds, and cost of transport in four Mediterranean intertidal gastropods. J Comp Physiol 147:113–121. doi:10.1007/BF00689299

    Article  Google Scholar 

  • Jeanson R, Blanco S, Fournier R, Deneubourg JL, Fourcassie V, Theraulaz G (2003) A model of animal movements in a bounded space. J Theor Biol 225:443–451. doi:10.1016/s0022-5193(03)00277-7

    Article  Google Scholar 

  • Karanovic I, Pesce GL (2001) Ostracods (Crustacea, Ostracoda) from underground waters of Puglia (southern Italy), with redescription of Pseudolimnocythere hypogea Klie, 1938. Thalass Salentina 25:11–39. doi:10.1285/i15910725v25p11

    Google Scholar 

  • Lissmann HW (1945) The mechanism of locomotion in gastropod molluscs I Kinematics. J Exp Biol 21:58–69

    Google Scholar 

  • Longo E, Mancinelli G (2014) Size at the onset of maturity (SOM) revealed in length–weight relationships of brackish amphipods and isopods: an information theory approach. Estuar Coast Shelf Sci 136:119–128. doi:10.1016/j.ecss.2013.11.013

    Article  Google Scholar 

  • Mancinelli G (2009) On the importance of body size in the colonisation of ephemeral resource patches by vagile consumers. Rend Lincei Sci Fis Nat 20:139–151. doi:10.1007/s12210-009-0046-8

    Article  Google Scholar 

  • Mancinelli G (2010) Intraspecific, size-dependent variation in the movement behaviour of a brackish-water isopod: a resource-free laboratory experiment. Mar Freshw Behav Physiol 43:321–337. doi:10.1080/10236244.2010.512728

    Article  Google Scholar 

  • Mancinelli G (2012) To bite, or not to bite? A quantitative comparison of foraging strategies among three brackish crustaceans feeding on leaf litters. Estuar Coast Shelf Sci 110:125–133. doi:10.1016/j.ecss.2012.04.002

    Article  Google Scholar 

  • Mancinelli G, Rossi L (2001) Indirect, size-dependent effects of crustacean mesograzers on the Rhodophyta Gracilaria verrucosa (Hudson) Papenfuss: evidence from a short-term study in the Lesina Lagoon (Italy). Mar Biol 138:1163–1173. doi:10.1007/s002270100545

    Article  Google Scholar 

  • Mancinelli G, Sabetta L, Basset A (2005) Short-term patch dynamics of macroinvertebrate colonization on decaying reed detritus in a Mediterranean lagoon (Lake Alimini Grande, Apulia, SE Italy). Mar Biol 148:271–283. doi:10.1007/s00227-005-0091-5

    Article  Google Scholar 

  • Mancinelli G, Sabetta L, Basset A (2007a) Colonization of ephemeral detrital patches by vagile macroinvertebrates in a brackish lake: a body size-related process? Oecologia 151:292–302. doi:10.1007/s00442-006-0586-x

    Article  Google Scholar 

  • Mancinelli G, Sabetta L, Sangiorgio F (2007b) On the influence of temporal resolution in mesh bag decomposition studies. Int Rev Hydrobiol 92:135–145. doi:10.1002/iroh.200510951

    Article  Google Scholar 

  • Mancinelli G, Carrozzo L, Marini G, Costantini ML, Rossi L, Pinna M (2013a) Occurrence of the Atlantic blue crab Callinectes sapidus (Decapoda, Brachyura, Portunidae) in two Mediterranean coastal habitats: temporary visitor or permanent resident? Estuar Coast Shelf Sci 135:46–56. doi:10.1016/j.ecss.2013.04.004

    Article  CAS  Google Scholar 

  • Mancinelli G, Sangiorgio F, Scalzo A (2013b) The effects of decapod crustacean macroconsumers on leaf detritus processing and colonization by invertebrates in stream habitats: a meta-analysis. Int Rev Hydrobiol 98:206–216. doi:10.1002/iroh.201301539

    Article  Google Scholar 

  • Mancinelli G, Vizzini S, Mazzola A, Maci S, Basset A (2013c) Cross-validation of δ15N and FishBase estimates of fish trophic position in a Mediterranean lagoon: the importance of the isotopic baseline. Estuar Coast Shelf Sci 135:77–85. doi:10.1016/j.ecss.2013.04.004

    Article  CAS  Google Scholar 

  • McDonald WR, St Clair CC (2004) The effects of artificial and natural barriers on the movement of small mammals in Banff National Park, Canada. Oikos 105:397–407. doi:10.1111/j.0030-1299.2004.12640.x

    Article  Google Scholar 

  • Miller SL (1974) Adaptive design of locomotion and foot form in prosobranch gastropods. J Exp Mar Biol Ecol 14:99–156. doi:10.1016/0022-0981(74)90021-5

    Article  Google Scholar 

  • Moorter B, Bunnefeld N, Panzacchi M, Rolandsen CM, Solberg EJ, Sæther BE (2013) Understanding scales of movement: animals ride waves and ripples of environmental change. J Anim Ecol 82:770–780. doi:10.1111/1365-2656.12045

    Article  Google Scholar 

  • Mueller T, Fagan WF (2008) Search and navigation in dynamic environments—from individual behaviors to population distributions. Oikos 117:654–664. doi:10.1111/j.0030-1299.2008.16291.x

    Article  Google Scholar 

  • Muggeo VMR (2003) Estimating regression models with unknown break-points. Stat Med 22:3055–3071. doi:10.1002/sim.1545

    Article  Google Scholar 

  • Muggeo VMR (2008) Segmented: an R package to fit regression models with broken-line relationships. R News 8:20–25

    Google Scholar 

  • Nams VO (2006) Detecting oriented movement of animals. Anim Behav 72:1197–1203. doi:10.1016/j.anbehav.2006.04.005

    Article  Google Scholar 

  • Nams VO, Bourgeois M (2004) Fractal analysis measures habitat use at different spatial scales: an example with American marten. Can J Zool 82:1738–1747. doi:10.1139/z04-167

    Article  Google Scholar 

  • Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, Smouse PE (2008) A movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci USA 105:19052–19059. doi:10.1073/pnas.0800375105

    Article  CAS  Google Scholar 

  • Ng T, Saltin SH, Davies MS, Johannesson K, Stafford R, Williams GA (2013) Snails and their trails: the multiple functions of trail-following in gastropods. Biol Rev 88:683–700. doi:10.1111/brv.12023

    Article  Google Scholar 

  • Pascual M, Levin SA (1999) From individuals to population densities: searching for the intermediate scale of nontrivial determinism. Ecology 80:2225–2236. doi:10.1890/0012-9658(1999)080[2225:FITPDS]2.0.CO;2

  • Potenza L, Mancinelli G (2010) Body mass-related shift in movement behaviour in the isopod Lekanesphaera hookeri (Isopoda, Flabellifera): a laboratory study. Ital J Zool 77:354–361. doi:10.1080/11250000903449860

    Article  Google Scholar 

  • Schick RS, Loarie SR, Colchero F, Best BD, Boustany A, Conde DA, Halpin PN, Joppa LN, McClellan CM, Clark JS (2008) Understanding movement data and movement processes: current and emerging directions. Ecol Lett 11:1338–1350. doi:10.1111/j.1461-0248.2008.01249.x

    Article  Google Scholar 

  • Schuler MS, Cooper BS, Storm JJ, Sears MW, Angilletta MJ Jr (2011) Isopods failed to acclimate their thermal sensitivity of locomotor performance during predictable or stochastic cooling. PLoS One 6:e20905. doi:10.1371/journal.pone.0020905

    Article  CAS  Google Scholar 

  • Somerton DA (1980) A computer technique for estimating the size of sexual maturity in crabs. Can J Fish Aquat Sci 37:1488–1494. doi:10.1139/f80-192

    Article  Google Scholar 

  • Stegen JC, Ferriere R, Enquist BJ (2012) Evolving ecological networks and the emergence of biodiversity patterns across temperature gradients. Proc R Soc Biol Sci Ser B 279:1051–1060. doi:10.1098/rspb.2011.1733

    Article  Google Scholar 

  • Sugiura N (1978) Further analysis of the data by Akaike’s information criterion and the finite corrections. Commun Stat Theory Methods A7:13–26. doi:10.1080/03610927808827599

    Article  Google Scholar 

  • Turchin P (1996) Fractal analyses of animal movement: a critique. Ecology 77:2086–2090. doi:10.2307/2265702

    Article  Google Scholar 

  • Turner AM, Turner SE, Lappi HM (2006) Learning, memory and predator avoidance by freshwater snails: effects of experience on predator recognition and defensive strategy. Anim Behav 72:1443–1450. doi:10.1016/j.anbehav.2006.05.010

    Article  Google Scholar 

  • Verschut TA, Meineri E, Basset A (2015) Biotic interactions affect the colonization behavior of aquatic detritivorous macroinvertebrates in a heterogeneous environment. Estuar Coast Shelf Sci 157:120–128. doi:10.1016/j.ecss.2015.03.014

    Article  Google Scholar 

  • Wiens JA, Crist TO, With KA, Milne BT (1995) Fractal patterns of insect movement in microlandscape mosaics. Ecology 76:663–666. doi:10.2307/1941226

    Article  Google Scholar 

  • With KA (1994) Ontogenetic shifts in how grasshoppers interact with landscape structure—an analysis of movement patterns. Funct Ecol 8:477–485. doi:10.2307/2390072

    Article  Google Scholar 

Download references

Acknowledgments

This study was performed by E.L. in partial fulfilment of the requirements for a Ph.D. in Ecology and Climate Changes at the University of Salento. Funding from F.U.R. 2011–2012 to G. M. is acknowledged. The authors thank Fabio Vignes for insightful discussions on crustacean metabolism. An anonymous reviewer provided helpful comments on an early draft of the manuscript. This paper is dedicated to Sofia Mancinelli, thy eternal summer shall not fade.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Mancinelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Longo, E., Verschut, T., Carrozzo, L. et al. Inter- and intra-specific variation in movement behaviour of benthic macroinvertebrates from a transitional habitat: a laboratory experiment. Rend. Fis. Acc. Lincei 27, 281–290 (2016). https://doi.org/10.1007/s12210-015-0475-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-015-0475-5

Keywords

Navigation