Skip to main content
Log in

Trapping of gold nanoparticles within arrays of topological defects: evolution of the LSPR anisotropy

  • Life, New Materials and Plasmonics
  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

We demonstrate how the localized surface plasmon resonance (LSPR) of gold nanoparticles is affected by their trapping within topological defect cores. Using aligned arrays of smectic edge dislocations, we evidence a reversal of the LSPR anisotropy, when the nanoparticle concentration increases. We combine UV–visible spectroscopy with simulations to show that this reversal is related to a transformation of the nanoparticle organization. When the concentration increases, the organization varies from nanoparticle chains parallel to the dislocations to anisotropic nanoparticle ribbons, larger in the direction perpendicular to the dislocations, moreover denser perpendicular to the dislocation than parallel to the dislocations. This transformation may be associated with the localized presence of dense arrays of aligned dislocations, inducing a compression between the NPs, but only in the direction perpendicular to the dislocations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Coursault D, Grand J, Zappone B, Ayeb H, Lévi G, Félidj N, Lacaze E (2012) Linear self-assembly of nanoparticles within liquid crystal defect arrays. Adv Mater 24(11):1461–1465

    Article  CAS  Google Scholar 

  • Coursault D, Ibrahim BH, Pelliser L, Zappone B, de Martino A, Lacaze E, Gallas B (2014) Modeling the optical properties of self-organized arrays of liquid crystal defects. Opt Express 22(19):23182–23191. doi:10.1364/OE.22.023182. http://www.opticsexpress.org/abstract.cfm?URI=oe-22-19-23182

  • Coursault D, Blach J-F, Grand J, Coati A, Zappone B, Babonneau D, Lévi G, Félidj N, Donnio B, Gallani J-L, Alba M, Garreau Y, Borensztein Y, Goldmann M, Lacaze E (2015) Towards a control of anisotropic interactions between soft nanospheres using dense arrays of smectic liquid crystal edge dislocations (submitted)

  • Garcia MA, de la Venta J, Crespo P, Llopis J, Penades S, Fernandez A, Hernando A (2005) Surface plasmon resonance of capped au nanoparticles. Phys Rev 72:241403

    Article  Google Scholar 

  • Géminard J-C, Laroche C, Oswald P (1998) Edge dislocation in a vertical smectic film: line tension versus film thickness and Burgers vector. Phys Rev E 58:5923–5925. doi:10.1103/PhysRevE.58.5923

    Article  Google Scholar 

  • Girard C (2005) Near fields in nanostructures. Rep Prog Phys 68(8):1883

    Article  Google Scholar 

  • Grzelczak M, Vermant J, Furst EM, Liz-Marzan LM (2010) Directed self-assembly of nanoparticles. ACS Nano 4(7):3591–3605. doi:10.1021/nn100869j

    Article  CAS  Google Scholar 

  • Horn RG (1978) Refractive indices and order parameters of two liquid crystals. J Phys France 39(1):105–109. doi:10.1051/jphys:01978003901010500

    Article  CAS  Google Scholar 

  • Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  • Karatairi E, Rozic B, Kutnjak Z, Tzitzios V, Nounesis G, Cordoyiannis G, Thoen J, Glorieux C, Kralj S (2010) Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases. Phys Rev E 81:041703

    Article  Google Scholar 

  • Khlebtsov NG, Dykman LA (2010) Optical properties and biomedical applications of plasmonic nanoparticles. J Quant Spectrosc Radiat Transf 111(1):1–35. doi:10.1016/j.jqsrt.2009.07.012

    Article  CAS  Google Scholar 

  • Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer series in materials science, vol v. 25. Springer, Berlin. ISBN 9780387578361

  • Laibnis PE, Nuzzo RG, Whitesides GM (1992) Structure of monolayers formed by coadsorption of 2 normal-alkanethiols of different chain lengths on gold and its relation to wetting. J Phys Chem 96:5097–5105

    Article  Google Scholar 

  • Mackowski DW (1994) Calculation of total cross sections of multiple-sphere clusters. J Opt Soc Am A 11(11):2851–2861. doi:10.1364/JOSAA.11.002851. http://josaa.osa.org/abstract.cfm?URI=josaa-11-11-2851

  • Michel JP, Lacaze E, Alba M, de Boissieu M, Gailhanou M, Goldmann M (2004) Optical gratings formed in thin smectic films frustrated on a single crystalline substrate. Phys Rev E 70:011709

    Article  Google Scholar 

  • Michel JP, Lacaze E, Goldmann M, Gailhanou M, de Boissieu M, Alba M (2006) Structure of smectic defect cores: X-ray study of 8CB liquid crystal ultrathin films. Phys Rev Lett 96(2):027803

    Article  Google Scholar 

  • Milette J, Relaix S, Lavigne C, Toader V, Cowling SJ, Saez IM, Lennox RB, Goodby JW, Reven L (2012) Reversible long-range patterning of gold nanoparticles by smectic liquid crystals. Soft Matter 8:6593–6598

    Article  CAS  Google Scholar 

  • Pelliser L, Manceau M, Lethiec C, Coursault D, Vezzoli S, Lemenager G, Coolen L, DeVittorio M, Pisanello F, Carbone L, Maitre A, Bramati A, Lacaze E (2015) Alignment of rod-shaped single photon emitters driven by line defects in liquid crystals. Adv Funct Mater 25:1719–1726

    Article  CAS  Google Scholar 

  • Pelton M, Aizpurua J, Bryant G (2008) Metal-nanoparticle plasmonics. Laser Photonics Rev 2(3):136–159. doi:10.1002/lpor.200810003

    Article  CAS  Google Scholar 

  • Pendery JS, Merchiers O, Coursault D, Grand J, Ayeb H, Greget R, Donnio B, Gallani J-L, Rosenblatt C, Felidj N, Borensztein Y, Lacaze E (2013) Gold nanoparticle self-assembly moderated by a cholesteric liquid crystal. Soft Matter 9:9366–9375

    Article  CAS  Google Scholar 

  • Schapotschnikow P, Pool R, Vlugt TJ (2008) Molecular simulations of interacting nanocrystals. Nano Lett 8(9):2930–2934

    Article  CAS  Google Scholar 

  • Senyuk B, Evans JS, Ackerman PJ, Lee T, Manna P, Vigderman L, Zubarev ER, van de Lagemaat J, Smalyukh II (2012) Shape-dependent oriented trapping and scaffolding of plasmonic nanoparticles by topological defects for self-assembly of colloidal dimers in liquid crystals. Nano Lett 12:955–963

    Article  CAS  Google Scholar 

  • Tripathy S, Marty R, Lin VK, Teo SL, Ye E, Arbouet A, Saviot L, Girard C, Han MY, Mlayah A (2011) Acousto-plasmonic and surface-enhanced Raman scattering properties of coupled gold nanospheres/nanodisk trimers. Nano Lett 11(2):431–437

    Article  CAS  Google Scholar 

  • Williams C, Kléman M (1975) Dislocation, grain boundaries and focal conics in smectics a. Journal de Physique Colloques 36:1–3151320. doi:10.1051/jphyscol:1975152

    Google Scholar 

  • Yockell-Lelièvre H, Gingras D, Vallée R, Ritcey AM (2009) Coupling of localized surface plasmon resonance in self-organized polystyrene-capped gold nanoparticle films. J Phys Chem C 113(51):21293–21302. doi:10.1021/jp905063m

    Article  Google Scholar 

  • Yoshida H, Tanaka Y, Kawamoto K, Kubo H, Tsuda T, Fujii A, Kuwabata S, Kikuchi H, Ozaki M (2009) Nanoparticle-stabilized cholesteric blue phases. Appl Phys Express 2:121501

    Article  Google Scholar 

  • Zappone B, Lacaze E (2008) Surface-frustrated periodic textures of smectic—A liquid crystals on crystalline surfaces. Phy Rev E Stat Nonlinear Soft Matter Phys 78:061704

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuelle Lacaze.

Additional information

This contribution is the written, peer-reviewed version of a paper presented at one of the two conferences “From Life to Life: Through New Materials and Plasmonics”, Accademia Nazionale dei Lincei in Rome on June 23, 2014, and at “NanoPlasm 2014: New Frontiers in Plasmonics and NanoOptics”, Cetraro (CS) on June 16–20, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lacaze, E., Merchiers, O., Borensztein, Y. et al. Trapping of gold nanoparticles within arrays of topological defects: evolution of the LSPR anisotropy. Rend. Fis. Acc. Lincei 26 (Suppl 2), 183–191 (2015). https://doi.org/10.1007/s12210-015-0438-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-015-0438-x

Keywords

Navigation