Description of the effect of temperature on food systems using the deformed Arrhenius rate law: deviations from linearity in logarithmic plots vs. inverse temperature

Abstract

In order to account for the deviations from the Arrhenius rate law for the effect of temperature on food processes, we adopt an alternative approach inspired by the deformed exponential based on the Euler limit. The non-enzymatic browning of onions and the growth of bacteria were chosen to validate our proposal, which provides a better description than other formulas previously tested for these systems. These results show that the deformed Arrhenius rate law is suitable for describing the effect of rate-temperature on different food systems and suggest a relationship between the kinetic behavior of food processes and classical collective phenomena.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Al-Malah KIM et al (2001) Application of WLF and Arrhenius kinetics to rheology of selected dark-colored honey. J Food Process Eng 24(5):341–357

    Article  Google Scholar 

  2. Aquilanti V et al (2012) Exact activation energies and phenomenological description of quantum tunneling for model potential energy surfaces. The F + H2 reaction at low temperature. Chem Phys 398:186–191

    Article  CAS  Google Scholar 

  3. Aquilanti V et al (2010) Temperature dependence of chemical and biophysical rate processes: Phenomenological approach to deviations from Arrhenius law. Chem Phys Lett 498(1–3):209–213

    Article  CAS  Google Scholar 

  4. Berto MI, Silveira V, Vitali AA (2003) Mathematical models for the prediction of rheological parameters of Brazilian concentrated orange juices. J Food Sci Technol Mysore 40(4):366–370

    Google Scholar 

  5. Calligaris S et al (2004) Application of a modified arrhenius equation for the evaluation of oxidation rate of sunflower oil at subzero temperatures. J Food Sci 69(8):E361–E366

    Article  CAS  Google Scholar 

  6. Cavalli S et al (2014) Theoretical reaction kinetics astride the transition between moderate and deep tunneling regimes: the F + HD case. J Phys Chem A 118(33):6632–6641

    Article  CAS  Google Scholar 

  7. Das D, Langrish TAG (2012) Activated-rate theory: Effect of protein inhibition and the temperature dependence of crystallization kinetics for lactose-protein mixtures. Food Res Int 48(2):367–373

    Article  CAS  Google Scholar 

  8. Daughtry GJ, Davey KR, King KD (1997) Temperature dependence of growth kinetics of food bacteria. Food Microbiol 14(1):21–30

    Article  Google Scholar 

  9. De Oliveira HCB et al (2009) Calculation of MP(2) and coupled-cluster molecular properties using the q-integral method. J Phys Chem A 113(52):14691–14698

    Article  CAS  Google Scholar 

  10. De Oliveira HCB et al (2008) Molecular properties calculations using the q-integral method. Int J Quantum Chem 108(13):2540–2549

    Article  CAS  Google Scholar 

  11. El-Ghaisha S et al (2011) Potential use of lactic acid bacteria for reduction of allergenicity and for longer conservation of fermented foods. Trends Food Sci Technol 22:509–516

    Article  Google Scholar 

  12. Esteves CS et al (2006) Modeling diatomic potential energy curves through the generalized exponential function. Chem Phys Lett 427(1–3):10–13

    Article  CAS  Google Scholar 

  13. Fujikawa H, Kai A, Morozumi S (2004a) Improvement of new logistic model for bacterial growth. J Food Hyg Soc Jpn 45(5):250–254

    Article  Google Scholar 

  14. Fujikawa H, Kai A, Morozumi S (2004b) A new logistic model for Escherichia coli growth at constant and dynamic temperatures. Food Microbiol 21(5):501–509

    Article  Google Scholar 

  15. Gautschi W (2008) Leonhard euler: his life, the man, and his works. SIAM Rev 50(1):3–33

    Article  Google Scholar 

  16. Giannakourou MC, Taoukis PS (2003) Stability of dehydrofrozen green peas pretreated with nonconventional osmotic agents. J Food Sci 68(6):2002–2010

    Article  CAS  Google Scholar 

  17. Hill RM, Dissado LA (1982) The temperature dependence of relaxation processes. J Phys C Solid State Phys 15:5171–5193

    Article  CAS  Google Scholar 

  18. Huang LH, Hwang AD, Phillips J (2011a) Effect of temperature on microbial growth rate-mathematical analysis: the Arrhenius and Eyring-Polanyi connections. J Food Sci 76(8):E553–E560

    Article  CAS  Google Scholar 

  19. Huang LH, Hwang CA, Phillips J (2011b) Evaluating the effect of temperature on microbial growth rate-the Ratkowsky and a Belehradek-type models. J Food Sci 76(8):M547–M557

    Article  CAS  Google Scholar 

  20. Hulett JR (1964) Deviations from the Arrhenius equation. Q Rev 18:227–242. doi:10.1039/QR9641800227

    Article  CAS  Google Scholar 

  21. Karmas R, Buera MP, Karel M (1992) Effect of glass-transition on rates of nonenzymatic browning in food systems. J Agric Food Chem 40(5):873–879

  22. Kawai K et al (2005) The rate of non-enzymatic browning reaction in model freeze-dried food system in the glassy state. Innov Food Sci Emerg Technol 6(3):346–350

    Article  CAS  Google Scholar 

  23. Labuza TP, Fu B (1997) Shelf life testing: procedures and prediction methods for frozen foods: quality of frozen food. Intl. Thomson Publishing, New York, pp 377–415

    Google Scholar 

  24. Laidler KJ (1996) A glossary of terms used in chemical kinetics, including reaction dynamics. Pure Appl Chem 68(1):149–192

    Article  CAS  Google Scholar 

  25. Langrish TAG (2008) Assessing the rate of solid-phase crystallization for lactose: the effect of the difference between material and glass-transition temperatures. Food Res Int 41(6):630–636

    Article  CAS  Google Scholar 

  26. Lenzi EK, Anteneodo C, Borland L (2001) Escape time in anomalous diffusive media. Phys Rev E 63:051109-1–051109-5

    Article  Google Scholar 

  27. Li N, Taylor LS, Mauer LJ (2011) Degradation kinetics of catechins in green tea powder: effects of temperature and relative humidity. J Agric Food Chem 59(11):6082–6090

    Article  CAS  Google Scholar 

  28. Machado DFS et al (2012) Fully relativistic rovibrational energies and spectroscopic constants of the lowest \({\text{X:(1)}}_{g}^{+}, A^{\prime}{\text{:(1)}}2_u, \text{A:(1)} 1_u, {\text {B}}^{\prime}\text{:(1)} 0_{u}^{-}\;\text{and}\;{\text {B:(1)0}}_{u}^{+}\) states of molecular chlorine. J Mol Model 18(9):4343–4348

    Article  CAS  Google Scholar 

  29. Martins RC et al (2008) Computational shelf-life dating: complex systems approaches to food quality and safety. Food Bioprocess Technol 1:207–222

    Article  Google Scholar 

  30. Mundim KC (2005) An analytical procedure to evaluate electronic integrals for molecular quantum mechanical calculations. Phys A Stat Mech Appl 350(2–4):338–348

    Article  CAS  Google Scholar 

  31. Nelson KA, Labuza TP (1994) Water activity and food polymer science: implications of state on Arrhenius and WLF models in predicting shelf life. J Food Eng 22(1–4):271–289

    Article  Google Scholar 

  32. Nishiyama M et al (2009a) Mass spectrometric study of the kinetics of O2 consumption and CO2 production by breathing leaves. Chem Phys Lett 470(4–6):332–336

    Article  CAS  Google Scholar 

  33. Nishiyama M et al (2009b) Temperature dependence of respiration rates of leaves, 18 O-experiments and super-Arrhenius kinetics. Chem Phys Lett 482(4):325–329

    Article  CAS  Google Scholar 

  34. Parker R, Ring SG (1995) A theoretical analysis of diffusion controlled reactions in frozen solutions. Cryoletters 16:197–208

    CAS  Google Scholar 

  35. Peleg M (1992) On the use of the WLF model in polymers and foods. Crit Rev Food Sci Nutr 32(1):59–66

    Article  CAS  Google Scholar 

  36. Peleg M et al (2002) Non-Arrhenius and non-WLF kinetics in food systems. J Sci Food Agric 82(12):1346–1355

    Article  CAS  Google Scholar 

  37. Peleg M, Normand MD, Corradini MG (2012) The Arrhenius equation revisited. Crit Rev Food Sci Nutr 52:830–851

    Article  CAS  Google Scholar 

  38. Rangel FC et al (2013) Alternative approach to calculate two-center overlap matrix through deformed exponential function. J Phys Chem A 117(30):6622–6628

    Article  CAS  Google Scholar 

  39. Rangel FC et al (2010) Calculation of DFT molecular properties using the q-integral method. Phys A Stat Mech Appl 389(22):5208–5215

    Article  CAS  Google Scholar 

  40. Ratkowsky DA et al (1982) Relationship between temperature and growth-rate of bacterial cultures. J Bacteriol 149(1):1–5

    CAS  Google Scholar 

  41. Sa MM, Sereno AM (1999) The kinetics of browning measured during the storage of onion and strawberry. Int J Food Sci Technol 34(4):343–349

    Article  CAS  Google Scholar 

  42. Salviano LR et al (2010) Use of generalized exponential function to build three-dimensional reactive surfaces. Phys A Stat Mech Appl 389(17):3604–3612

    Article  CAS  Google Scholar 

  43. Sapru V, Labuza TP (1993) Glassy state in bacterial-spores predicted by polymer glass-transition theory. J Food Sci 58(2):445–448

    Article  Google Scholar 

  44. Silva VHC et al (2013) Uniform description of non-Arrhenius temperature dependence of reaction rates, and a heuristic criterion for quantum tunneling vs classical non-extensive distribution. Chem Phys Lett 590:201–207

    Article  CAS  Google Scholar 

  45. Sun DW (2011) Handbook of frozen food processing and packaging, 2nd ed, Taylor & Francis

  46. Tsallis C (1988) Possible generalization of Boltzmann-Gibbs statistics. J Stat Phys 52:479–487

    Article  Google Scholar 

  47. Tsallis C (2009) Introduction to nonextensive statistical mechanics: approaching a complex world. Springer, New York

    Google Scholar 

  48. Williams ML, Landel RF, Ferry JD (1955) Temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. Phys Rev 98(5):1549–1549

    Google Scholar 

  49. Yu K et al (2011) Modeling thermal degradation of litchi texture: comparison of WeLL model and conventional methods. Food Res Int 44(7):1970–1976

    Article  Google Scholar 

  50. Zhao J-L, Bao J-D (2005) Transition state theory rate in nonlinear environment: the under-damping case. Commun Theor Phys (Beijing, China) 44:752–756

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support given to this work by grants from the CAPES, CNPQ and FINATEC Foundations. We are indebted to Professor Vincenzo Aquilanti for valuable discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Heibbe C. B. de Oliveira.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Coutinho, N.D., Silva, V.H.C., Mundim, K.C. et al. Description of the effect of temperature on food systems using the deformed Arrhenius rate law: deviations from linearity in logarithmic plots vs. inverse temperature. Rend. Fis. Acc. Lincei 26, 141–149 (2015). https://doi.org/10.1007/s12210-015-0407-4

Download citation

Keywords

  • Deformed Arrhenius rate law
  • Temperature effect
  • Foods
  • Browning of onions
  • Growth of bacteria