Rendiconti Lincei

, Volume 26, Supplement 2, pp 161–174 | Cite as

Gain-assisted plasmonic metamaterials: mimicking nature to go across scales

  • Antonio De Luca
  • Roberto Bartolino
  • Miguel A. Correa-Duarte
  • M. Lucia Curri
  • Nicole F. Steinmetz
  • Giuseppe Strangi
Life, New Materials and Plasmonics


Nature as a source of inspiration for designing and fabricating nanostructured materials with unconventional properties is an unparalleled driving force of this work leading to low-loss metamaterials. Here, we report about a multipronged approach to create optical metamaterials based on plasmonic nanostructures, hierarchical organization and interplay between plasmon elements and excitonic molecules. This work is focused on strategies and approaches to produce gain to metamaterials across scales with the aim of realizing low-loss optical materials and unlocking their unconvetional electromagnetic properties. Finally, we describe how a biomimetic approach based on gain-functionalized bionanoparticle can be harnessed for diagnostics and theranostics.


Gain–plasmon interaction Active metamaterials Bionanoparticles 



The research leading to these results has received support and funding from the Ohio Third Frontier Project Research Cluster on Surfaces in Advanced Materials (RC-SAM), the European Union’s Seventh Framework Programme (FP7/2008) METACHEM Project under Grant Agreement No. 228762 and from the Italian Project “NanoLase” - PRIN 2012, protocol number 2012JHFYMC. This work was partially supported by a grant from the National Science Foundation CMMI-1333651 to N.F.S.


  1. Bergman DJ, Stockman MI (2003) Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys Rev Lett 90:027402CrossRefGoogle Scholar
  2. Bhowmick S, Saini S, Shenoy VB, Bagchi B (2006) Resonance energy transfer from a fluorescent dye to a metal nanoparticle. J Chem Phys 125:181102–16CrossRefGoogle Scholar
  3. Chithrani BD, Chan WCW (2007) Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 7(6):1542–1550. doi: 10.1021/nl070363y
  4. De Luca A, Grzelczak MP, Pastoriza-Santos I, Liz-Marzán LM, Deda ML, Striccoli M, Strangi G (2011) Dispersed and encapsulated gain medium in pPlasmonic nanoparticles: a multipronged approach to mitigate optical losses. ACS Nano 5:5823–5829CrossRefGoogle Scholar
  5. De Luca A, Ferrie M, Ravaine S, La Deda M, Infusino M, Rahimi Rashed A, Veltri A, Aradian A, Scaramuzza N, Strangi G (2012) Gain functionalized coreshell nanoparticles: the way to selectively compensate absorptive losses. J Mater Chem 22:8846–8852Google Scholar
  6. De Luca A, Depalo N, Fanizza E, Striccoli M, Curri ML, Infusino M, Rashed AR, Deda ML, Strangi G (2013) Plasmon mediated super-absorber flexible nanocomposite for metamaterials. Nanoscale 5:6097CrossRefGoogle Scholar
  7. De Luca A, Dhama R, Rashed AR, Coutant C, Ravaine S, BaroisP, Infusino M, Strangi G (2014) Double strong exciton-plasmon coupling in gold nanoshells infiltrated with fluorophores. Appl Phys Lett 104(10):103103Google Scholar
  8. Dorfman KE, Jha PK, Voronine DV, Genevet P, Capasso F, Scully MO (2013) Quantum-coherence-enhanced surface plasmon amplification by stimulated emission of radiation. Phys Rev Lett 111:043601CrossRefGoogle Scholar
  9. Doussineau T, Trupp S, Mohr GJ (2009) Ratiometric pH-Nanosensors based on rhodamine-doped silica nanoparticles functionalized with a naphthalimide derivative. J Colloid Interface Sci 339:266–270CrossRefGoogle Scholar
  10. Draine BT (2000) Light scattering by nonspherical particles: theory, measurements, and applications. Academic Press, New York Google Scholar
  11. Dulkeith E, Morteani AC, Niedereichholz T, Klar TA, Feldmann J, Levi SA, vanVeggel FCJM, Reinhoudt DN, Moller M, Gittins DI (2002) Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects. Phys Rev Lett 89:203002Google Scholar
  12. Fang A, Koschny T, Wegener M, Soukoulis CM (2009) Self-consistent calculation of metamaterials with gain. Phys Rev B 79:241104CrossRefGoogle Scholar
  13. Fernández-López C, Mateo-Mateo C, Alvarez-Puebla RA, Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM (2009) Highly controlled silica coating of PEG-capped metal nanoparticles and preparation of SERS-encoded particles. Langmuir 25:13894–13899CrossRefGoogle Scholar
  14. Fontana J, Dressick WJ, Phelps J, Johnson JE, Rendell RW, Sampson T, Ratna BR, Soto CM, Virus-templated plasmonic nanoclusters with icosahedral symmetry via directed self-assembly. Small 10(15), 3058–3063 (2014). doi: 10.1002/smll.201400470
  15. Förster T (1948) Intermolecular energy migration and fluorescence. Ann Phys 2:55–75CrossRefGoogle Scholar
  16. Geiger FC, Eber FJ, Eiben S, Mueller A, Jeske H, Spatz JP, Wege C ((2013)) Tmv nanorods with programmed longitudinal domains of differently addressable coat proteins. Nanoscale 5:808–3816. doi: 10.1039/C3NR33724C
  17. Gersten J, Nitzan A (1981) Spectroscopic properties of molecules interacting with small dielectric particles. J Chem Phys 75:1139–1152CrossRefGoogle Scholar
  18. Halas NJ, Lal S, Chang WS, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111:3913–3961CrossRefGoogle Scholar
  19. Infusino M, Luca A, Veltri A, Vázquez-Vázquez C, Correa-Duarte MA, Dhama R, Strangi G (2014) Loss-mitigated collective resonances in gain-assisted plasmonic mesocapsules. ACS Photon 1(4):371–376CrossRefGoogle Scholar
  20. Jones M, Lo SS, Scholes GD (2009) Quantitative modeling of the role of surface traps in CdSe/CdS/ZnS nanocrystal photoluminescence decay dynamics. PNAS 106:3011–3016CrossRefGoogle Scholar
  21. Khlebtsov NG (2008) Optics and biophotonics of nanoparticles with a plasmon resonance. Quantum Electron 38:504CrossRefGoogle Scholar
  22. Lakowicz JR (2001) Radiative decay engineering: biophysical and biomedical applications. Anal Biochem 298:1–24CrossRefGoogle Scholar
  23. Lawandy NM (2004) Localized surface plasmon singularities in amplifying media. Appl Phys Lett. 85:5040–5042CrossRefGoogle Scholar
  24. Lawandy NM (2005) Nano-particle plasmonics in active media. Proc SPIE 59240:59240–113CrossRefGoogle Scholar
  25. Lee JY, Buxton GA, Balazs AC (2004) Using nanoparticles to create self-healing composites. J Chem Phys 121:5531CrossRefGoogle Scholar
  26. Lewis JD, Destito G, Zijlstra A, Gonzalez MJ, Quigley JP, Manchester M, Stuhlmann H (2006) Viral nanoparticles as tools for intravital vascular imaging. Nat Med 12(3): 354–360. doi: 10.1038/nm1368
  27. Miller RA, Presley AD, Francis MB (2007) Self-assembling light-harvesting systems from synthetically modified tobacco mosaic virus coat proteins. J Am Chem Soc 129(11):3104–3109. doi: 10.1021/ja063887t
  28. Nan A, Bai X, Son SJ, Lee SB, Ghandehari H (2008) Cellular uptake and cytotoxicity of silica nanotubes. Nano Lett 8(8):2150–2154. doi:  10.1021/nl0802741
  29. Noginov MA, Zhu G, Bahoura M, Adegoke J, Small CE, Ritzo BA, Drachev VP, Shalaev VM (2006) Enhancement of surface plasmons in an ag aggregate by optical gain in a dielectric medium. Opt Lett 31:3022–3024CrossRefGoogle Scholar
  30. Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Let. 85:3966–3969CrossRefGoogle Scholar
  31. Pokorski JK, Steinmetz NF (2011) The art of engineering viral nanoparticles. Mol Pharm 8(1):29–43 doi: 10.1021/mp100225y
  32. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex structures. Science 302:419–422CrossRefGoogle Scholar
  33. Rodríguez-Fernández J, Pérez-Juste J, deAbajo FJG, Liz-Marzán LM (2006) Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes. Langmuir 22:7007–7010Google Scholar
  34. Salman AA, Tortschanoff A, van derZwan G, vanMourik F, Chergui M (2009) A model for the multi-exponential excited-state decay of cdse nanocrystals. Chem Phys 357:96–101Google Scholar
  35. Sanlés-Sobrido M, Exner W, Rodríguez-Lorenzo L, Rodríguez-González B, Correa-Du arte MA, Alvarez-Puebla RA, Liz-Marzán L (2009) Design of SERS-encoded, submicron, hollow particles through confined growth of encapsulated metal nanoparticles. J Am Chem Soc 131:2699–2705Google Scholar
  36. Sanlés-Sobrido M, Pérez-Lorenzo M, Rodríguez-González B, Salgueiriño V, Correa- Du arte MA (2012) Back cover: highly active nanoreactors: nanomaterial encapsulation based on confined catalysis. Angew Chem Int Ed 51:3877–3882Google Scholar
  37. Sapsford KE, Soto CM, Blum AS, Chatterji A, Lin T, Johnson JE, Ligler FS, Ratna BR (2006) A cowpea mosaic virus nanoscaffold for multiplexed antibody conjugation: application as an immunoassay tracer. Biosens Bioelectron 21(8):1668–1673. doi: 10.1016/j.bios.2005.09.003.
  38. Schaeublin NM, Braydich-Stolle LK, Maurer EI, Park K, MacCuspie RI, Afrooz ARMN, Vaia RA, Saleh NB, Hussain SM (2012) Does shape matter? Bioeffects of gold nanomaterials in a human skin cell model. Langmuir 28(6):3248–3258. doi:10.1021/la204081m.  10.1021/la204081m
  39. Schlick TL, Ding Z, Kovacs EW, Francis MB (2005) Dual-surface modification of the tobacco mosaic virus. J Am Chem Soc 127(11):3718–3723. doi:10.1021/ja046239n.  10.1021/ja046239n
  40. Shojaei-Zadeh S, Morris JF, Couzis A, Maldarelli C (2011) Highly crosslinked poly(dimethylsiloxane) microbeads with uniformly dispersed quantum dot nanocrystals. J Colloid Interface Sci 363:25CrossRefGoogle Scholar
  41. Soto CM, Blum AS, Vora GJ, Lebedev N, Meador CE, Won AP, Chatterji A, Johnson JE, Ratna BR (2006) Fluorescent signal amplification of carbocyanine dyes using engineered viral nanoparticles. J Am Chem Soc 128(15):5184–5189. doi: 10.1021/ja058574x
  42. Steinmetz NF, Ablack AL, Hickey JL, Ablack J, Manocha B, Mymryk JS, Luyt LG, Lewis JD (2011) Intravital imaging of human prostate cancer using viral nanoparticles targeted to gastrin-releasing peptide receptors. Small 7(12):1664–1672. doi: 10.1002/smll.201000435
  43. Stockman MI (2008) Spasers explained. Nat Photon 2:327–329CrossRefGoogle Scholar
  44. Strangi G, De Luca A, Ravaine S, Ferrie M, Bartolino R (2011) Gain induced optical transparency in metamaterials. Appl Phys Lett 98:251912CrossRefGoogle Scholar
  45. Sun J, DuFort C, Daniel M-C, Murali A, Chen C, Gopinath K, Stein B, De M, Rotello VM, Holzenburg A, Kao CC, Dragnea B (2007) Core-controlled polymorphism in virus-like particles. Proc Natl Acad Sci 104(4):1354–1359. doi:10.1073/pnas.0610542104.
  46. Tagaya M, Nakagawa M (2011) Incorporation of decanethiol-passivated gold nanoparticles into cross-linked poly(dimethylsiloxane) films. Smart Mater Res 7:390273Google Scholar
  47. Tovmachenko OG, Graf C, van den Heuvel DJ, van Blaaderen A, Gerritsen HC (2006) Fluorescence enhancement by metal-core/silica-shell nanoparticles. Adv Mat 18:91–95Google Scholar

Copyright information

© Accademia Nazionale dei Lincei 2015

Authors and Affiliations

  • Antonio De Luca
    • 1
  • Roberto Bartolino
    • 1
  • Miguel A. Correa-Duarte
    • 2
  • M. Lucia Curri
    • 3
  • Nicole F. Steinmetz
    • 4
  • Giuseppe Strangi
    • 1
    • 5
  1. 1.Department of Physics and CNR-IMIPUniversity of CalabriaRendeItaly
  2. 2.Department of Physical ChemistryUniversity of VigoVigoSpain
  3. 3.CNR-IPCF UOS Bari, c/o Department of ChemistryUniversity of BariBariItaly
  4. 4.Department of Biomedical Engineering, Radiology, Materials Science and Engineering, Macromolecular Science and EngineeringCase Western Reserve UniversityClevelandUSA
  5. 5.Department of PhysicsCase Western Reserve UniversityClevelandUSA

Personalised recommendations