Spatial influence of regional centres of Slovakia: analysis based on the distance-decay function

Abstract

The uneven distribution of centres in settlement systems and the non-homogeneity of social-economic space are the stimuli for the existence of spatial interactions. The interactions, that manifest the changes in their intensity with an increasing distance from a centre, can be described by distance-decay functions. This paper presents the construction, analysis and typology of distance-decay functions for regional centres of Slovakia using the daily travel-to-work flow data. Apart from an estimation of individual distance decay functions for each centre, a universal distance-decay function is also constructed through more sophisticated statistical analyses, where not only distance is the input parameter, but also the population of a centre. The resulting distance-decay functions have a wide range of uses in spatial interaction modelling (commuting, transportation, etc.). They also define the range of spatial influence of regional centres and therefore they can be used, for example, in proposals and revisions for the administrative division of a territory.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Aubigny GD’, Caldaza C, Grasland C, Viho G, Vincent J-M (2000) Approche statistique des modèles d’interaction spatiale. Cybergéo

  2. Box GEP, Cox DR (1964) An analysis of transformations. J R Stat Soc B 26:211–252

    Google Scholar 

  3. Cheng J, Bertolini L (2013) Measuring urban job accessibility with distance decay, competition and diversity. J Transp Geogr 30:100–109

    Article  Google Scholar 

  4. Christaller W (1933) Central places in southern Germany (trans. CW Baskin, 1966). Prentice-Hall, Englewood Cliffs

  5. Converse PD (1949) New laws of retail gravitation. J Mark 14(3):37–384

    Article  Google Scholar 

  6. De Vries JJ, Nijkamp P, Rietveld P (2009) Exponential or power distance-decay for commuting? An alternative specification. Environ Plan A 41:461–480

    Article  Google Scholar 

  7. Dougherty M (1995) A review of neural networks applied to transport. Transp Res C Emerg 3:247–260

    Article  Google Scholar 

  8. Džupinová E, Halás M, Horňák M, Hurbánek P, Káčerová M, Michniak D, Ondoš S, Rochovská A (2008) Periférnosť a priestorová polarizácia na území Slovenska. Bratislava, Geo-grafika

    Google Scholar 

  9. Fotheringham AS (1981) Spatial structure and distance-decay parameters. Ann Assoc Am Geogr 71:425–436

    Google Scholar 

  10. Fujita M, Krugman P, Venables AJ (2001) The spatial economy: cities, regions, and international trade. MIT Press, Cambridge

    Google Scholar 

  11. Gopal S, Fischer MM (1996) Learning in single hidden-layer feedforward network: backpropagation in a spatial interaction modeling context. Geogr Anal 28:38–55

    Article  Google Scholar 

  12. Grasland C (1996) A smoothing method based on multiscalar neighbourhood functions of potential. The Hypercarte Project, Working Paper 1

  13. Grasland C, Potrykowska A (2002) Mesures de la proximité spatial: les migrations résidentielles à Varsovie. L’Espace géographique 31:208–226

    Google Scholar 

  14. Gutiérrez J, Cardozo OD, García-Palomares JC (2011) Transit ridership forecasting at station level: an approach based on distance-decay weighted regression. J Transp Geogr 19:1081–1092

    Article  Google Scholar 

  15. Halás M (2005) Dopravný potenciál regiónov Slovenska. Geografie 110:257–270

    Google Scholar 

  16. Halás M (2008) Priestorová polarizácia spoločnosti s detailným pohľadom na periférne regióny Slovenska. Sociol Cas 44:349–369

    Google Scholar 

  17. Halás M (2014) Modelovanie priestorového usporiadania a dichotómie centrum–periféria. Geografie 119:384–405

    Google Scholar 

  18. Halás M, Klapka P (2012) Contribution to regional division of Slovakia based on the application of the Reilly’s model. Hungarian geographical bulletin 61:237–255

    Google Scholar 

  19. Halás M, Klapka P, Kladivo P (2014) Distance-decay functions for daily travel-to-work flows. J Transp Geogr 35:107–119

    Article  Google Scholar 

  20. Heldt Cassel S, Macuchova Z, Rudholm N, Rydell A (2013) Willingness to commute long distance among job seekers in Dalarna, Sweden. J Transp Geogr 28:49–55

    Article  Google Scholar 

  21. Himanen V, Nijkamp P, Reggiani A (1998) Neural networks in transport applications. Ashgate, Brookfield

    Google Scholar 

  22. Huff DL (1964) Defining and estimating a trading area. J Marketing 28(3):34–38

    Article  Google Scholar 

  23. Ibeas Á, Cordera R, dell’Olio L, Coppola P (2013) Modelling the spatial interactions between workplace and residential location. Transp Res A Pol 49:110–122

    Article  Google Scholar 

  24. Johansson B, Klaesson J, Olsson M (2002) Time distances and labor market integration. Pap Reg Sci 81:305–327

    Article  Google Scholar 

  25. Klapka P, Erlebach M, Král O, Lehnert M, Mička T (2013) The footfall of shopping centres in Olomouc (Czech Republic): an application of the gravity model. Morav Geogr Rep 21(3):12–26

    Google Scholar 

  26. Klapka P, Halás M, Erlebach M, Tonev P, Bednář M (2014) A multistage agglomerative approach for defining functional regions of the Czech Republic: the use of 2001 commuting data. Morav Geogr Rep 22(4):2–13

    Google Scholar 

  27. Korec P (2005) Regionálny rozvoj Slovenska v rokoch 1989–2004. Bratislava, Geo-grafika

    Google Scholar 

  28. Kraft S, Blažek J (2012) Spatial interactions and regionalisation of the Vysočina Region using the gravity models. Acta Universitatis Palackianae Olomucensis. Geographica 43:65–82

    Google Scholar 

  29. Kraft S, Halás M, Vančura M (2014) The delimitation of urban hinterlands based on transport flows: a case study of regional capitals in the Czech Republic. Morav Geogr Rep 22(1):24–32

    Google Scholar 

  30. Liu Y, Sui Z, Kang C, Gao Y (2014) Uncovering patterns of inter-urban trip and spatial interaction from social media check-in data. PLoS ONE 9:e86026

    Article  Google Scholar 

  31. Lukniš M (1985) Regionálne členenie Slovenskej socialistickej republiky z hľadiska jej racionálneho rozvoja. Geografický časopis 37:137–163

    Google Scholar 

  32. Mamuna SA, Lownes NE, Osleeb JP, Bertolaccini K (2013) A method to define public transit opportunity space. J Transp Geogr 28:144–154

    Article  Google Scholar 

  33. Martínez LM, Viegas JM (2013) A new approach to modelling distance-decay functions for accessibility assessment in transport studies. J Transp Geogr 26:87–96

    Article  Google Scholar 

  34. Morlon H, Chuyong G, Condit R, Hubbell S, Kenfack D, Thomas D, Valencia R, Green JL (2008) A general framework for the distance–decay of similarity in ecological communities. Ecol Lett 11:904–917

    Article  Google Scholar 

  35. Mozolin M (1997) Spatial interaction modeling with an artificial neural network. Discussion Paper. Series 97-1, Athens, University of Georgia

  36. Mozolin M, Thill J-C, Lynn Usery E (2000) Trip distribution forecasting with multilayer perceptron neural networks: a critical evaluation. Transp Res B Methodol 34:53–73

    Article  Google Scholar 

  37. O´Kelly EM, Niedzielski MA (2009) Are long commute distance inefficient and disorderly? Environ Plan A 41:2741–2759

    Article  Google Scholar 

  38. Ortúzar JD, Willumsen LG (2011) Modelling transport. Wiley, New York

  39. Ravenstein EG (1885) The laws of migration. J R Stat Soc 48:167–235

    Google Scholar 

  40. Řehák S, Halás M, Klapka P (2009) Několik poznámek k možnostem aplikace Reillyho modelu. Geographia Moravica 1:47–58

    Google Scholar 

  41. Reilly WJ (1929) Methods for the study of retail relationships. University of Texas Bulletin No. 2944. University of Texas, Austin

  42. Reilly WJ (1931) The law of retail gravitation. Knickerbocker Press, New York

    Google Scholar 

  43. Richards FJ (1959) A flexible growth function for empirical use. J Exp Bot 10:290–300

    Article  Google Scholar 

  44. Rosina K, Hurbánek P (2013) Internet availability as an indicator of peripherality in Slovakia. Morav Geogr Rep 21:16–24

    Google Scholar 

  45. Roth C, Kang SM, Batty M, Barthélemy M (2011) Structure of urban movements: polycentric activity and entangled hierarchical flows. PLoS ONE 6:e15923

    Article  CAS  Google Scholar 

  46. Sileshi GW, Arshad MA (2012) Application of distance–decay models for inferences about termite mound-induced patterns in dryland ecosystems. J Arid Environ 77:138–148

    Article  Google Scholar 

  47. Soininen J, Mcdonald R, Hillebrand H (2007) The distance decay of similarity in ecological communities. Ecography 30:3–12

    Article  Google Scholar 

  48. Stewart JQ (1948) Demographic gravitation: evidence and applications. Sociometry 11:31–58

    Article  Google Scholar 

  49. Taylor PJ (1971) Distance transformation and distance decay function. Geogr Anal 3:221–238

    Article  Google Scholar 

  50. Taylor PJ, Hoyler M, Verbruggen R (2010) External urban relational process: introducing central flow theory to complement central place theory. Urban Studies 47:2803–2818

    Article  Google Scholar 

  51. Thompson DL (1966) Future directions in retail area research. Econ Geogr 42:1–18

    Article  Google Scholar 

  52. Tiefelsdorf M (2003) Misspecifications in interaction model distance decay relations: a spatial structure effect. J Geogr Syst 5:25–50

    Article  Google Scholar 

  53. Timmermans H, Van der Waerden P, Alves M, Polak J, Ellis S, Harvey AS, Kurose S, Zandee R (2003) Spatial context and the complexity of daily travel patterns: an international comparison. J Transp Geogr 11:37–46

    Article  Google Scholar 

  54. Ubøe J (2004) Aggregation of gravity models for journeys to work. Environ Plan A 36:715–729

    Article  Google Scholar 

  55. Willigers J, Floor H (2007) Accessibility indicators for location choices of offices: an application to the intraregional distributive effects of high-speed rail in the Netherlands. Environ Plann A 39:2086–2098

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Internal Grant Agency of the Palacký University Olomouc under project Grant Geographical structures and interactions: analysis and modelling of the organisation of space [Number IGA_PrF_2015_006].

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marián Halás.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Halás, M., Klapka, P. Spatial influence of regional centres of Slovakia: analysis based on the distance-decay function. Rend. Fis. Acc. Lincei 26, 169–185 (2015). https://doi.org/10.1007/s12210-015-0387-4

Download citation

Keywords

  • Spatial interactions
  • Travel-to-work flows
  • Distance-decay function
  • Spatial influence
  • Radius of influence
  • Slovakia