Rendiconti Lincei

, Volume 26, Issue 2, pp 169–185 | Cite as

Spatial influence of regional centres of Slovakia: analysis based on the distance-decay function

Article

Abstract

The uneven distribution of centres in settlement systems and the non-homogeneity of social-economic space are the stimuli for the existence of spatial interactions. The interactions, that manifest the changes in their intensity with an increasing distance from a centre, can be described by distance-decay functions. This paper presents the construction, analysis and typology of distance-decay functions for regional centres of Slovakia using the daily travel-to-work flow data. Apart from an estimation of individual distance decay functions for each centre, a universal distance-decay function is also constructed through more sophisticated statistical analyses, where not only distance is the input parameter, but also the population of a centre. The resulting distance-decay functions have a wide range of uses in spatial interaction modelling (commuting, transportation, etc.). They also define the range of spatial influence of regional centres and therefore they can be used, for example, in proposals and revisions for the administrative division of a territory.

Keywords

Spatial interactions Travel-to-work flows Distance-decay function Spatial influence Radius of influence Slovakia 

References

  1. Aubigny GD’, Caldaza C, Grasland C, Viho G, Vincent J-M (2000) Approche statistique des modèles d’interaction spatiale. CybergéoGoogle Scholar
  2. Box GEP, Cox DR (1964) An analysis of transformations. J R Stat Soc B 26:211–252Google Scholar
  3. Cheng J, Bertolini L (2013) Measuring urban job accessibility with distance decay, competition and diversity. J Transp Geogr 30:100–109CrossRefGoogle Scholar
  4. Christaller W (1933) Central places in southern Germany (trans. CW Baskin, 1966). Prentice-Hall, Englewood CliffsGoogle Scholar
  5. Converse PD (1949) New laws of retail gravitation. J Mark 14(3):37–384CrossRefGoogle Scholar
  6. De Vries JJ, Nijkamp P, Rietveld P (2009) Exponential or power distance-decay for commuting? An alternative specification. Environ Plan A 41:461–480CrossRefGoogle Scholar
  7. Dougherty M (1995) A review of neural networks applied to transport. Transp Res C Emerg 3:247–260CrossRefGoogle Scholar
  8. Džupinová E, Halás M, Horňák M, Hurbánek P, Káčerová M, Michniak D, Ondoš S, Rochovská A (2008) Periférnosť a priestorová polarizácia na území Slovenska. Bratislava, Geo-grafikaGoogle Scholar
  9. Fotheringham AS (1981) Spatial structure and distance-decay parameters. Ann Assoc Am Geogr 71:425–436Google Scholar
  10. Fujita M, Krugman P, Venables AJ (2001) The spatial economy: cities, regions, and international trade. MIT Press, CambridgeGoogle Scholar
  11. Gopal S, Fischer MM (1996) Learning in single hidden-layer feedforward network: backpropagation in a spatial interaction modeling context. Geogr Anal 28:38–55CrossRefGoogle Scholar
  12. Grasland C (1996) A smoothing method based on multiscalar neighbourhood functions of potential. The Hypercarte Project, Working Paper 1Google Scholar
  13. Grasland C, Potrykowska A (2002) Mesures de la proximité spatial: les migrations résidentielles à Varsovie. L’Espace géographique 31:208–226Google Scholar
  14. Gutiérrez J, Cardozo OD, García-Palomares JC (2011) Transit ridership forecasting at station level: an approach based on distance-decay weighted regression. J Transp Geogr 19:1081–1092CrossRefGoogle Scholar
  15. Halás M (2005) Dopravný potenciál regiónov Slovenska. Geografie 110:257–270Google Scholar
  16. Halás M (2008) Priestorová polarizácia spoločnosti s detailným pohľadom na periférne regióny Slovenska. Sociol Cas 44:349–369Google Scholar
  17. Halás M (2014) Modelovanie priestorového usporiadania a dichotómie centrum–periféria. Geografie 119:384–405Google Scholar
  18. Halás M, Klapka P (2012) Contribution to regional division of Slovakia based on the application of the Reilly’s model. Hungarian geographical bulletin 61:237–255Google Scholar
  19. Halás M, Klapka P, Kladivo P (2014) Distance-decay functions for daily travel-to-work flows. J Transp Geogr 35:107–119CrossRefGoogle Scholar
  20. Heldt Cassel S, Macuchova Z, Rudholm N, Rydell A (2013) Willingness to commute long distance among job seekers in Dalarna, Sweden. J Transp Geogr 28:49–55CrossRefGoogle Scholar
  21. Himanen V, Nijkamp P, Reggiani A (1998) Neural networks in transport applications. Ashgate, BrookfieldGoogle Scholar
  22. Huff DL (1964) Defining and estimating a trading area. J Marketing 28(3):34–38CrossRefGoogle Scholar
  23. Ibeas Á, Cordera R, dell’Olio L, Coppola P (2013) Modelling the spatial interactions between workplace and residential location. Transp Res A Pol 49:110–122CrossRefGoogle Scholar
  24. Johansson B, Klaesson J, Olsson M (2002) Time distances and labor market integration. Pap Reg Sci 81:305–327CrossRefGoogle Scholar
  25. Klapka P, Erlebach M, Král O, Lehnert M, Mička T (2013) The footfall of shopping centres in Olomouc (Czech Republic): an application of the gravity model. Morav Geogr Rep 21(3):12–26Google Scholar
  26. Klapka P, Halás M, Erlebach M, Tonev P, Bednář M (2014) A multistage agglomerative approach for defining functional regions of the Czech Republic: the use of 2001 commuting data. Morav Geogr Rep 22(4):2–13Google Scholar
  27. Korec P (2005) Regionálny rozvoj Slovenska v rokoch 1989–2004. Bratislava, Geo-grafikaGoogle Scholar
  28. Kraft S, Blažek J (2012) Spatial interactions and regionalisation of the Vysočina Region using the gravity models. Acta Universitatis Palackianae Olomucensis. Geographica 43:65–82Google Scholar
  29. Kraft S, Halás M, Vančura M (2014) The delimitation of urban hinterlands based on transport flows: a case study of regional capitals in the Czech Republic. Morav Geogr Rep 22(1):24–32Google Scholar
  30. Liu Y, Sui Z, Kang C, Gao Y (2014) Uncovering patterns of inter-urban trip and spatial interaction from social media check-in data. PLoS ONE 9:e86026CrossRefGoogle Scholar
  31. Lukniš M (1985) Regionálne členenie Slovenskej socialistickej republiky z hľadiska jej racionálneho rozvoja. Geografický časopis 37:137–163Google Scholar
  32. Mamuna SA, Lownes NE, Osleeb JP, Bertolaccini K (2013) A method to define public transit opportunity space. J Transp Geogr 28:144–154CrossRefGoogle Scholar
  33. Martínez LM, Viegas JM (2013) A new approach to modelling distance-decay functions for accessibility assessment in transport studies. J Transp Geogr 26:87–96CrossRefGoogle Scholar
  34. Morlon H, Chuyong G, Condit R, Hubbell S, Kenfack D, Thomas D, Valencia R, Green JL (2008) A general framework for the distance–decay of similarity in ecological communities. Ecol Lett 11:904–917CrossRefGoogle Scholar
  35. Mozolin M (1997) Spatial interaction modeling with an artificial neural network. Discussion Paper. Series 97-1, Athens, University of GeorgiaGoogle Scholar
  36. Mozolin M, Thill J-C, Lynn Usery E (2000) Trip distribution forecasting with multilayer perceptron neural networks: a critical evaluation. Transp Res B Methodol 34:53–73CrossRefGoogle Scholar
  37. O´Kelly EM, Niedzielski MA (2009) Are long commute distance inefficient and disorderly? Environ Plan A 41:2741–2759CrossRefGoogle Scholar
  38. Ortúzar JD, Willumsen LG (2011) Modelling transport. Wiley, New YorkGoogle Scholar
  39. Ravenstein EG (1885) The laws of migration. J R Stat Soc 48:167–235Google Scholar
  40. Řehák S, Halás M, Klapka P (2009) Několik poznámek k možnostem aplikace Reillyho modelu. Geographia Moravica 1:47–58Google Scholar
  41. Reilly WJ (1929) Methods for the study of retail relationships. University of Texas Bulletin No. 2944. University of Texas, AustinGoogle Scholar
  42. Reilly WJ (1931) The law of retail gravitation. Knickerbocker Press, New YorkGoogle Scholar
  43. Richards FJ (1959) A flexible growth function for empirical use. J Exp Bot 10:290–300CrossRefGoogle Scholar
  44. Rosina K, Hurbánek P (2013) Internet availability as an indicator of peripherality in Slovakia. Morav Geogr Rep 21:16–24Google Scholar
  45. Roth C, Kang SM, Batty M, Barthélemy M (2011) Structure of urban movements: polycentric activity and entangled hierarchical flows. PLoS ONE 6:e15923CrossRefGoogle Scholar
  46. Sileshi GW, Arshad MA (2012) Application of distance–decay models for inferences about termite mound-induced patterns in dryland ecosystems. J Arid Environ 77:138–148CrossRefGoogle Scholar
  47. Soininen J, Mcdonald R, Hillebrand H (2007) The distance decay of similarity in ecological communities. Ecography 30:3–12CrossRefGoogle Scholar
  48. Stewart JQ (1948) Demographic gravitation: evidence and applications. Sociometry 11:31–58CrossRefGoogle Scholar
  49. Taylor PJ (1971) Distance transformation and distance decay function. Geogr Anal 3:221–238CrossRefGoogle Scholar
  50. Taylor PJ, Hoyler M, Verbruggen R (2010) External urban relational process: introducing central flow theory to complement central place theory. Urban Studies 47:2803–2818CrossRefGoogle Scholar
  51. Thompson DL (1966) Future directions in retail area research. Econ Geogr 42:1–18CrossRefGoogle Scholar
  52. Tiefelsdorf M (2003) Misspecifications in interaction model distance decay relations: a spatial structure effect. J Geogr Syst 5:25–50CrossRefGoogle Scholar
  53. Timmermans H, Van der Waerden P, Alves M, Polak J, Ellis S, Harvey AS, Kurose S, Zandee R (2003) Spatial context and the complexity of daily travel patterns: an international comparison. J Transp Geogr 11:37–46CrossRefGoogle Scholar
  54. Ubøe J (2004) Aggregation of gravity models for journeys to work. Environ Plan A 36:715–729CrossRefGoogle Scholar
  55. Willigers J, Floor H (2007) Accessibility indicators for location choices of offices: an application to the intraregional distributive effects of high-speed rail in the Netherlands. Environ Plann A 39:2086–2098CrossRefGoogle Scholar

Copyright information

© Accademia Nazionale dei Lincei 2015

Authors and Affiliations

  1. 1.Department of Geography, Faculty of SciencePalacký University OlomoucOlomoucCzech Republic

Personalised recommendations