Skip to main content
Log in

The Earth gravity field in the time of satellites

  • Geodesy and Geomatics to the edge
  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

Physical geodesy is by definition the science which studies and calculates the Earth’s gravity field and its physical form. Satellite physical geodesy exploits satellite techniques to solve the problems established in physical geodesy. During the second half of the twentieth century, satellite techniques allowed to make outstanding advances in the knowledge of the gravity field of our planet, contributing to the estimation of more and more accurate geoid models, at higher and higher spatial and temporal resolution. In this way, satellite geodesy missions indeed enabled scientists to gain better knowledge of the shape of the Earth, of fundamental geophysical phenomena, of the shape of the oceans surface, of sea currents, of ice sheets and of climatological phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. The spherical harmonic model of the Earth's gravitational potential EGM2008 was estimated by least squares combination of the ITG-GRACE03S gravitational model and gravitational information obtained from a global set of mean free-air gravity anomalies given on a 5 arc-minute equiangular grid. This grid was estimated by merging terrestrial, altimetry-derived, and airborne gravity data. EGM2008 is complete to degree and order 2159, plus additional coefficients up to degree 2190 and order 2159. Over areas having good gravity data coverage, the discrepancies between EGM2008 geoid undulations and GPS/Levelling derived undulations are on the order of ±5 to ±10 cm.

References

  • Andersen OB, (2010) The DTU10 Gravity field and Mean sea surface. In: Second international symposium of the gravity field of the Earth (IGFS2), Fairbanks, Alaska

  • Barlier F, Lefebvre M (2001) A new look at planet Earth: fatellite geodesy and geosciences. The century of space science. Kluwer, New York, pp 1–29

    Google Scholar 

  • Beaussier J, Mainguy A-M, Olivero A, Rolland R (1977) In orbit performance of the Cactus accelerometer (D5B spacecraft). Acta Astronaut 4(9–10):1085–1102

    Article  Google Scholar 

  • Bender PL, Wiese DN, Nerem RS (2008). A possible Dual-GRACE mission with 90 degree and 63 degree inclination orbits, in Proc. of the 3rd International symposium on Formation flying, missions and technologies, Noordwijk (NL)

  • Bryant DL, Nerem RS, Luthcke SB (2012) Simulation study of a follow-on gravity mission to GRACE. J Geodesy 86:319–335

    Article  Google Scholar 

  • Buchar E (1958) Motion of the nodal line of the second Russian Earth satellite (1957β) and flattening of the Earth. Nature 182:198–199

    Article  Google Scholar 

  • Flechtner F, Dahle Ch, Neumayer KH, König R, Förste Ch (2010) The release 04 CHAMP and GRACE EIGEN gravity field models. In: Flechtner F, Gruber Th, Güntner A, Mandea M, Rothacher M, Schöne T, Wickert J (eds) System Earth via geodetic-geophysical space techniques. Springer, Berlin, pp 41–58

    Chapter  Google Scholar 

  • Floberghagen R, Fehringer M, Lamarre D, Muzi D, Frommknecht B, Steiger C, Piñeiro J, da Costa A (2011) Mission design, operation and exploitation of the gravity field and steady-state ocean circulation explorer mission. J Geodesy 85:749–758

    Article  Google Scholar 

  • Gilardoni M, Reguzzoni M, Sampietro D (2013) A least-squares collocation procedure to merge local geoids with the aid of satellite-only gravity models: the Italian/Swiss geoids case study. Bollettino di Geofisica Teorica ed Applicata 54(4):303–319

    Google Scholar 

  • Han SC, Shum CK, Bevis M, Ji C, Kuo CY (2006) Crustal dilatation observed by GRACE after the 2004 Sumatra-Andaman earthquake. Science 313:658–662

    Article  CAS  Google Scholar 

  • Heiskanen WA, Moritz H (1967) Physical geodesy. WH Freeman, San Francisco

    Google Scholar 

  • Hofmann-Wellenhof B, Lichtenegger H, Collins J (2001) Global positioning system: theory and practice. Springer, Berlin

    Book  Google Scholar 

  • Lundquist CA, Veis G (1966) Geodetic parameters for a 1966 Smithsonian Institution standard Earth; special report No. 200, Smithsonian Astrophysical Observatory, Cambridge

  • Mayer-Gürr T, (2006) Gravitationsfeldbestimmung aus der Analyse kurzer Bahnbögen am Beispiel der Satellitenmissionen CHAMP und GRACE. PhD Thesis, University of Bonn

  • Merson RH, King-Hele DG (1958) Use of artificial satellites to explore the Earth’s gravitational field: results from Sputnik2 (1957β). Nature 182:640–641

    Article  Google Scholar 

  • Migliaccio F, Reguzzoni M, Sansò F (2004) Space-wise approach to satellite gravity field determination in the presence of coloured noise. J Geodesy 78(4–5):304–313

    Article  Google Scholar 

  • Nichols RH (1974) Geodetic SECOR satellite. Department of Commerce, NTIS, USA

    Google Scholar 

  • Pail R, Bruinsma S, Migliaccio F, Förste C, Goiginger H, Schuh W-D, Höck E, Reguzzoni M, Brockmann JM, Abrikosov O, Veicherts M, Fecher T, Mayrhofer R, Krasbutter I, Sansò F, Tscherning CC (2011) First GOCE gravity field models derived by three different approaches. J Geodesy 85(11):819–843

    Article  Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2008). An Earth gravitational model to degree 2160: EGM2008. Presented at European Geosciences Union General Assembly, Vienna, Austria, pp 13–18

  • Pearlman MR, Degnan JJ, Bosworth JM (2002) The international laser ranging service. Adv Space Res 30(2):135–143

    Article  Google Scholar 

  • Peters A, Chung KY, Chu S (1999) Measurement of gravitational acceleration by dropping atoms. Nature 400:849–852

    Article  CAS  Google Scholar 

  • Prange L, Jäggi A, Beutler G, Dach R, Mervart L (2009) Gravity field determination at the AIUB–the celestial mechanics approach. Observing our changing Earth. Int Assoc Geodesy Symp 133:353–362

    Google Scholar 

  • Ramillien G, Lombard A, Cazenave A, Irvins ER, Llubes M, Remy F, Biancale R (2006) Interannual variations of the mass balance of the Antarctica and Greenland ice sheets from GRACE. Glob Planet Change 53(3):198–208

    Article  Google Scholar 

  • Rapp RH (1997) Past and future developments in geopotential modelling. In: Forsberg R, Feissl M, Dietrich R (eds) Geodesy on the move. Springer, Berlin, pp 58–78

    Google Scholar 

  • Reigber Ch, Balmino G, Schwintzer P, Biancale R, Bode A, Lemoine J-M, Koenig R, Loyer S, Neumayer H, Marty J-C, Barthelmes F, Perosanz F, Zhu SY (2002) A high quality global gravity field model from CHAMP GPS tracking data and accelerometry (EIGEN-1S). Geophys Res Lett 29(14):37. doi:10.1029/2002GL015064

    Article  Google Scholar 

  • Reigber C, Jochmann H, Wünsch J, Petrovic S, Schwintzer P, Barthelmes F, Neumayer KH, König R, Förste C, Balmino G, Biancale R, Lemoine JM, Loyer S, Perosanz F (2004) Earth gravity field and seasonal variability from CHAMP. In: Reigber C, Lühr H, Schwintzer P, Wickert J (eds) Earth observation with CHAMP: results from three years in orbit. Springer, Berlin, pp 25–30

    Google Scholar 

  • Rummel R (1993) Principle of satellite altimetry and elimination of radial orbit errors. Satellite altimetry in geodesy and oceanography, lecture notes in Earth sciences 50, Springer, Berlin, pp 190–241

  • Tapley BD, Bettadpur S, Ries J, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the Earth system. Science 305:503–505

    Article  CAS  Google Scholar 

  • Teichman L.A (1968). The fabrication and testing of PAGEOS I, NASA TN D-4596, NASA, Washington D.C.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Barzaghi.

Additional information

Peer reviewed version of the paper presented at conference on Geodesy and Geomatics held at Accademia Nazionale dei Lincei in Rome on June 3, 2014.

Websites

Websites

  1. 1.

    International Laser Ranging Service, List of satellites: http://ilrs.gsfc.nasa.gov/satellite_missions/list_of_satellites/

  2. 2.

    Johns Hopkins APL, Technical Digest, The legacy of Transit: http://techdigest.jhuapl.edu/td/td1901/index.htm

  3. 3.

    NASA, Ocean Surface Topography Mission/Jason 2: http://www.nasa.gov/mission_pages/ostm/main/index.html

  4. 4.

    NASA, Spaceflight revolution: http://history.nasa.gov/SP-4308/

  5. 5.

    ICGEM, Table of models: http://icgem.gfz-potsdam.de/ICGEM/

  6. 6.

    NSSDC (National Space Science Data Center) Master Catalog Search: http://nssdc.gsfc.nasa.gov/nmc/masterCatalog.do?sc=1960-009A http://nssdc.gsfc.nasa.gov/nmc/spacecraftDisplay.do?id=1964-004A.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barzaghi, R., Migliaccio, F., Reguzzoni, M. et al. The Earth gravity field in the time of satellites. Rend. Fis. Acc. Lincei 26 (Suppl 1), 13–23 (2015). https://doi.org/10.1007/s12210-015-0382-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-015-0382-9

Keywords

Navigation