Skip to main content
Log in

Heavy metals biomonitoring via inhibitive assay of acetylcholinesterase from Periophthalmodon schlosseri

  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

Acetylcholinester ase (AChE) generally known to be sensitive toward insecticides but its sensitivity toward heavy metals was least reported. Herein, a sensitive assay for heavy metals has been pursued using AChE in a rapid and economic manner. The AChE from a mudskipper, Periophthalmodon schlosseri has been found to be sensitive toward copper > mercury > chromium > and arsenic ions at the sub parts per million levels. Field trial works showed that the assay was applicable in detecting heavy metals pollution from effluents of industrial sites at near real time and verified using ICP-OES and Flow Injection Mercury System (FIMS 400). Furthermore, hierarchical cluster analyses of inhibition profiles were performed, revealing a comparable capability of the AChE compared to the gold standard of Microtox™ method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Aidil MS, Sabullah MK, Halmi MIE, Sulaiman R, Shukor MS, Shukor MY, Shaharuddin NA, Syed MA, Syahir A (2013) Assay for heavy metals using an inhibitive assay based on the acetylcholinesterase from Pangasius hypophthalmus (Sauvage, 1878). Fresenius Environ Bull 22:3572–3576

    CAS  Google Scholar 

  • Amine A, Mohammadi H, Bourais I, Palleschi G (2006) Enzyme inhibition-based biosensors for food safety and environmental monitoring. Biosens Bioelectron 21:1405–1423

    Article  CAS  Google Scholar 

  • Anh BTK, Kim DD, Van TT, Kien NT, Anh DT (2011) Phytoremediation potential of indigenous plants from Thai Nguyen province, Vietnam. J Environ Biol 32:257–262

    CAS  Google Scholar 

  • Armbruster DA, Tillman MD, Hubbs LM (1994) Limit of detection (LOD)/limit of quantitation (LOQ): comparison of the empirical and the statistical methods exemplified with GC–MS assays of abused drugs. Clin Chem 40:1233–1238

    CAS  Google Scholar 

  • Begum G, Venkateswara RJ, Srikanth K (2006) Oxidative stress and changes in locomotor behaviour and gill morphology of Gambusia affinis exposed to chromium. Toxicol Environ Chem 88:355–365

    Article  CAS  Google Scholar 

  • Bocquene´ G, Galgani F, Truquet P (1990) Characterization and assay conditions for use of AChE activity from several marine species in pollution monitoring. Mar Environ Res 30:75–89

    Article  Google Scholar 

  • Department of Environment (DOE) (2013) Malaysia Environmental Quality Report, Department of Environment Ministry of Natural Resources and Environment Malaysia, ISSN 0127-6433

  • Drăghici C, Chirilă E, Ilie NE (2007) Metals concentration in soils adjacent to waste deposits. Environ Eng Manag J 6:497–503

    Google Scholar 

  • Ellman GL, Courtney KD, Andres VJ, Featherstone RM (1961) A new and rapid calorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  Google Scholar 

  • Frasco MF, Fournier D, Carvalho F, Guilhermino L (2008) Does mercury interact with the inhibitory effect of dichlorvos on Palaemon serratus (Crustacea: Decapoda) cholinesterase? Sci Total Environ 404:88–93

    Article  CAS  Google Scholar 

  • Glusker JP, Katz AK, Bock CW (1999) Metal ions in biological systems. Rigaku J 16:8–16

    CAS  Google Scholar 

  • Hernández-Moreno D, Soler F, Míguez MP, Pérez-López M (2010) Brain acetylcholinesterase, malondialdehyde and reduced glutathione as biomarkers of continuous exposure of tench, Tinca tinca, to carbofuran or deltamethrin. Sci Total Environ 408:4976–4983

    Article  Google Scholar 

  • Hoz DDL, Doctor BP, Robert JSR, Rush S, Wolfe AD (1986) A simplified procedure for the purification of large quantities of fetal bovine acetylcholinesterase. Life Sci 39:195–199

    Article  Google Scholar 

  • Hsieh CY, Tsai MH, Ryan DK, Pancorbo OC (2004) Toxicity of the 13 priority pollutants metals to Vibrio fisheri in the Microtox chronic toxicity test. Sci Total Environ 320:37–50

  • Ikram MM, Ismail A, Yap CK, Nor Azwady AA (2010) Levels of heavy metals (Zn, Cu, Cd, and Pb) in mudskippers (Periophthalmodon schlosseri) and sediments collected from intertidal areas at Morib and Remis, Peninsular Malaysia. Toxicol Environ Chem 92:1471–1486

    Article  CAS  Google Scholar 

  • Jamaludin AA, Mahmood NZ (2010) Effects of vermicomposting duration to macronutrient elements and heavy metals concentrations in vermicompost. Sains Malaysiana 395:711–715

    Google Scholar 

  • Jung K, Bitton G, Koopman B (1995) Assessment of urease inhibition assays for measuring toxicity of environmental samples. Water Res 29:1929–1933

    Article  Google Scholar 

  • Lim PE, Kiu MY (1995) Determination and speciation of heavy metals in sediments of the Juru River, Penang, Malaysia. Environ Monit Assess 35:85–95

  • Malitesta C, Guascito MR (2005) Heavy metal determination by biosensors based on enzyme immobilised by electropolymerisation. Biosens Bioelectron 20:1643–1647

    Article  CAS  Google Scholar 

  • Najimi S, Bouhaimi A, Daubèze M, Zekhnini A, Pellerin J, Narbonne JF, Moukrim A (1997) Use of acetylcholinesterase in Perna perna and Mytilus galloprovincialis as a biomarker of pollution in Agadir Marine Bay (South of Morocco). Bull Environ Contam Toxicol 58:901–908

    Article  CAS  Google Scholar 

  • Nwani CD, Nwachi DA, Okogwu OI, Ude EF, Odoh GE (2010) Heavy metals in fish species from lotic freshwater ecosystem at Afikpo, Nigeria. J Environ Biol 31:595–601

    CAS  Google Scholar 

  • Olson DL, Christensen GM (1980) Effects of water pollutants and other chemicals on fish acetylcholinesterase in-vitro. Environ Res 21:327–335

    Article  CAS  Google Scholar 

  • Pintilie S, Brânză L, Bețianu C, Pavel LV, Ungureanu F, Gavrilescu M (2007) Modelling and simulation of heavy metals transport in water and sediments. Environ Eng Manag J 6:153–161

    CAS  Google Scholar 

  • Sarah KV, Arlene GB, Paul LK (2013) Acute copper toxicity and acclimation to copper using the behavioral endpoint of shoaling, in the Least Killifish (Heterandria formosa). Water Air Soil Pollut 224:1627

    Article  Google Scholar 

  • Saravanan TS, Rajesh P, Sundaramoorthy M (2010) Studies on effects of chronic exposure of endosulfan to Labeo rohita. J Environ Biol 31:755–758

    CAS  Google Scholar 

  • Shukor MY, Baharom NA, Rahman FA, Abdullah MPA, Shamaan NA, Syed MA (2006) Development of a heavy metals enzymatic-based assay using papain. Anal Chim Acta 566:283–289

    Article  CAS  Google Scholar 

  • Shukor MY, Masdor N, Baharom NA, Jamal JA, Abdullah MPA, Shamaan NA, Syed MA (2008) An inhibitive determination method for heavy metals using bromelain, a cysteine protease. Appl Biochem Biotechnol 144:283–291

    Article  CAS  Google Scholar 

  • Shukor MY, Baharom NA, Masdor NA, Abdullah MPA, Shamaan NA, Jamal JA, Syed MA (2009) The development of the inhibitive determination for zinc using a serine protease. J Environ Biol 30:17–22

    CAS  Google Scholar 

  • Silva Filho MV, Oliveira MM, Salles JB, Cunha Bastos VLF, Cassano VPF, Cunha Bastos J (2004) Methyl-paraoxon comparative inhibition kinetics for acetylcholinesterases from brain of neotropical fishes. Toxicol Lett 153:247–254

    Article  CAS  Google Scholar 

  • Tham LG, Perumal N, Syed MA, Shamaan NA, Shukor MY (2009) Assessment of Clarias batrachus as a source of acetylcholinesterase (AChE) for the detection of insecticide. J Environ Biol 30:135–138

    CAS  Google Scholar 

  • Viarengo A (1989) Heavy metals in marine invertebrates: mechanism of regulation and toxicity at cellular level. CRC Crit Rev Aquat Sci 1:295–317

    CAS  Google Scholar 

  • Vieira LR, Gravato C, Soares AMVM, Morgado F, Guilhermino L (2009) Acute effects of copper and mercury on the estuarine fish Pomatoschistus microps: linking biomarkers to behavior. Chemosphere 76:1416–1427

    Article  CAS  Google Scholar 

  • Villatte F, Marcel V, Estrada-Mondac S, Fournier D (1998) Engineering sensitive acetylcholinesterase for detection of organophosphate and carbamate insecticides. Biosens Bioelectron 13:157–162

    Article  CAS  Google Scholar 

  • Witeska M, Jazierska B (2003) The effects of environmental factors on metal toxicity to fish (review). Fresenius Environ Bull 12:824–829

    CAS  Google Scholar 

  • Zaborska W, Krajewska B, Olech Z (2004) Heavy metal ions inhibition of jack bean urease: potential for rapid contaminant probing. J Enzym Inhib Med Chem 19:65–69

    Article  CAS  Google Scholar 

  • Zali MA, Retnam A, Juhair H (2011) Spatial characterization of water quality using principal component analysis approach at Juru River Basin, Malaysia. World Appl Sci J 14:55–59

    Google Scholar 

Download references

Acknowledgments

We thank the support of fund from Putra Research Grant under Project Number GP-IPM/2013/9401900.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Syahir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabullah, M.K., Sulaiman, M.R., Shukor, M.S. et al. Heavy metals biomonitoring via inhibitive assay of acetylcholinesterase from Periophthalmodon schlosseri . Rend. Fis. Acc. Lincei 26, 151–158 (2015). https://doi.org/10.1007/s12210-014-0359-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-014-0359-0

Keywords

Navigation