Skip to main content

Advertisement

Log in

New data on glacier fluctuations during the climatic transition at ~4,000 cal. year BP from a buried log in the Forni Glacier forefield (Italian Alps)

  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

Glacier history can be reconstructed thanks to geomorphological documentation of previous advances, dating of glacial deposits, and investigation of buried soils and included organic material, which may be linked to vegetation dynamics. A buried log was retrieved at 2,385 m a.s.l. on the northeast-facing slope of the upper Forni Valley (Italian Alps), where the homonymous valley glacier is located. The glacier forefield is currently facing an early successional forest expansion after the ongoing tongue retreat, mainly dominated by young Picea abies Karst. and Larix decidua Mill. specimens. From dendrochronological and radiocarbon analyses on the retrieved log, coupled with sedimentological and geopedological data, the past environmental and glacier conditions were reconstructed. The log belongs to the Stone pine species (Pinus cembra L.), it has 283 tree rings and became buried in the deposit in the Subboreal, after 4,201–4,032 cal. year BP, age of the outermost tree ring. The retrieved log reveals that during the Subboreal in the Forni Valley, likely much older specimens of Stone pine were present on the slopes, in strong contrast to present-day conditions. The log’s tree-ring growth rates were similar to those presented during the Little Ice Age peak by Stone pine trees of comparable age growing nowadays at the treeline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agatova AR, Nazarov AN, Nepop RK, Rodnight H (2012) Holocene glacier fluctuations and climate changes in the southeastern part of the Russian Altai (South Siberia) based on a radiocarbon chronology. Quat Sc Rev 43:74–93

    Article  Google Scholar 

  • Allen SM, Smith DJ (2007) Late Holocene glacial activity of Bridge Glacier, British Columbia Coast mountains. Can J Earth Sci 44(12):1753–1773

    Article  Google Scholar 

  • Anderson DG, Maasch KA, Sandweiss DH, Mayewski PA (2007) Climate and cultural change: Exploring Holocene transitions. In: Anderson DG, Maasch KA, Sandweiss DH (eds) Climate changes & cultural dynamics: a global perspective on mid-Holocene transitions. Academic Press, Salt Lake City, pp 1–23

    Chapter  Google Scholar 

  • Arnaud F, Revel M, Chapron E, Desmet M, Tribovillard N (2005) 7200 years of Rhône river flooding activity in Lake Le Bourget, France: a high-resolution sediment record of NW Alps hydrology. Holocene 15:420–428

    Article  Google Scholar 

  • Baroni C, Carton A (1990) Holocene variations of the Vedretta della Lobbia, Adamello Group, central Alps. Geogr Fis Din Quat 13(2):105–119

    Google Scholar 

  • Baroni C, Carton A (1996) Geomorphology of the upper Val di Genova (Adamello Group. Central Alps. Geogr Fis Din Quat 19(1):3–17

    Google Scholar 

  • Bertolini G, Casagli N, Ermini L, Malaguti C (2004) Radiocarbon data on Lateglacial and Holocene landslides in the Northern Apennines. Nat Hazards 3:645–662

    Article  Google Scholar 

  • Borgatti L, Soldati M (2010) Landslides as a geomorphological proxy for climate change: a record from the Dolomites (northern Italy). Geomorphology 120(1–2):56–64

    Article  Google Scholar 

  • Brauning A (2006) Tree-ring evidence of “Little Ice Age”advances in southern Tibet. The Holocene 16(3):369–380

    Article  Google Scholar 

  • Chernykh DV, Galakhov VP, Zolotov DV (2013) Synchronous fluctuations of glaciers in the Alps and Altai in the second half of the Holocene. The Holocene 23(7):1074–1079

    Article  Google Scholar 

  • Citterio M, Diolaiuti G, Smiraglia D, Agata C, Carnielli T, Stella G, Siletto GB (2007) The fluctuations of Italian glaciers during the last century: a contribution to knowledge about Alpine glacier changes. Geogr Ann A 89(3):164–182

    Article  Google Scholar 

  • Cook ER, Briffa KR (1990) Data analysis. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology. Applications in the environmental sciences, Kluwer Academic, Boston, pp 97–162

    Chapter  Google Scholar 

  • Coulthard B, Smith DJ, Lacourse T (2012) Dendroglaciological investigations of mid- to late-Holocene glacial activity in the Mt. Waddington area, British Columbia Coast Mountains, Canada. Holocene 23(1):93–103

    Article  Google Scholar 

  • Craig JA, Smith DJ (2013) Late Holocene glacial history of Scimitar Glacier, Mt. Waddington area, British Columbia Coast Mountains, Canada. Can J Earth Sci 50(12):1195–1208

    Article  Google Scholar 

  • Cremaschi M, Nicosia C (2012) Sub-Boreal aggradation along the Apennine margin of the Central Po Plain: geomorphological and geoarchaeological aspects. Géomorphologie 2:155–174

    Article  Google Scholar 

  • D’Agata C, Bocchiola D, Maragno D, Smiraglia C, Diolaiuti GA (2014) Glacier shrinkage driven by climate change in the Ortles-Cevedale Group (Stelvio National Park, Lombardy, Italian Alps) during half a century (1954–2007). Theoretical Applied Climatology 116:169–190

    Article  Google Scholar 

  • Deline P, Orombelli G (2005) Glacier fluctuations in the western Alps during the Neoglacial, as indicated by the Miage morainic amphitheatre (Mont Blanc massif, Italy). Boreas 34(4):456–467

    Article  Google Scholar 

  • Desio A (1967) I ghiacciai del Gruppo Ortles-Cevdeale. Comitato Glaciologico Italiano, Turin, Vol. 1 and 2

  • Desloges JR, Ryder JM (1990) Neoglacial history of the Coast Mountains near Bella Coola, British Columbia. Can J Earth Sci 27:281–290

    Article  Google Scholar 

  • Drysdale R, Zanchetta G, Hellstrom J, Maas R, Fallick A, Pickett M, Cartwright I, Piccini L (2006) Late Holocene drought responsible for the collapse of Old World civilizations is recorded in an Italian cave flowstone. Geology 34:101–104

    Article  CAS  Google Scholar 

  • Duchaufour P (1983) Pedologie: 1. Pedogenese et classification, Paris, p 59

    Google Scholar 

  • ERSAF (2012) http://www.ersaf.lombardia.it

  • FAO (2006a) Guidelines for soil description. Food and Agriculture Organization of the United Nations, Rome, p 109

    Google Scholar 

  • FAO (2006b) World reference base for soil resources. World Soil Resources Reports 103. Food and Agriculture Organization of the United Nations, Rome

  • Frezzotti M, Orombelli G (2014) Glaciers and ice sheets: current status and trends. Rend Fis Acc Lincei 25:59–70

    Article  Google Scholar 

  • Gale SJ, Hoare PG (1991) Quaternary sediments. Belhaven Press, NY, p 372

    Google Scholar 

  • Garbarino M, Lingua E, Nagel TA, Godone D, Motta R (2010) Patterns of larch establishment following deglaciation of Ventina glacier, central Italian Alps. For Ecol Manag 259:583–590

    Article  Google Scholar 

  • Gehrig-Fasel J, Guisan A, Zimmermann N (2007) Tree line shifts in the Swiss Alps: climate change or land abandonment? J Veg Sci 18:571–582

    Article  Google Scholar 

  • Grissino-Mayer HD (2001) Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree-Ring Res 57:205–221

    Google Scholar 

  • Holtmeier FK (2009) Mountain timberlines: Ecology, patchiness and dynamics. Springer, NY, p 438

    Book  Google Scholar 

  • Holzhauser H (2002) Dendrochronological evaluation of fossil wood to reconstruct Holocene history. Schweiz Z Forstw 153(1):17–28

    Article  Google Scholar 

  • Holzhauser H, Zumbuhl HJ (1999) Glacier fluctuations in the Western Swiss and French Alps in the 16th century. Clim Change 43(1):223–237

    Article  Google Scholar 

  • Hormes A, Müller BU, Schlüchter C (2001) The Alps with little ice: evidence for eight Holocene phases of reduced glacier extent in the Central Swiss Alps. Holocene 11(3):255–265

    Article  Google Scholar 

  • Ivy-Ochs S, Kerschner H, Reuther A, Preusser F, Heine K, Maisch M, Kubik PW, Schlüchter C (2008) Chronology of the Last Glacial cycle in the European Alps. J Quaternary Sci 23(6–7):559–573

    Article  Google Scholar 

  • Ivy-Ochs S, Kerschner H, Maisch M, Christl M, Kubik PW, Schlüchter C (2009) Latest Pleistocene and Holocene glacier variations in the European Alps. Quaternary Sci Rev 28(21–22):2137–2149

    Article  Google Scholar 

  • Jackson SI, Laxton SC, Smith DJ (2008) Dendroglaciological evidence for Holocene glacial advances in the Todd Icefield area, northern British Columbia Coast Mountains. Can J Earth Sci 45(1):83–98

    Article  CAS  Google Scholar 

  • Joerin UE, Stocker TF, Schluchter C (2006) Multicentury glacier fluctuations in the Swiss Alps during the Holocene. Holocene 16(5):697–704

    Article  Google Scholar 

  • Joerin UE, Nicolussi K, Fischer A, Stocker TF, Schlüchter C (2008) Holocene optimum events inferred from subglacial sediments at Tschierva Glacier. Eastern Swiss Alps. Quaternary Sci Rev 27(3–4):337–350

    Google Scholar 

  • Kelly MA, Buoncristiani JF, Schlüchter C (2004) A reconstruction of the Last Glacial Maximum (LGM) ice-surface geometry in the western Swiss Alps and contiguous Alpine regions in Italy and France. Eclogae Geol Helv 97:57–75

    Article  Google Scholar 

  • Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeography 31:713–732

    Article  Google Scholar 

  • Kromer B, Becker B (1993) German oak and pine 14C calibration, 7200-9439 BC. In: Stuiver M., Long A, Kra RS (ed) Calibration. Radiocarbon 35(1):125–135

  • Leonelli G, Pelfini M, Morra di Cella U (2009a) Detecting climatic treelines in the Italian Alps: the influence of geomorphological factors and of human impacts. Phys Geogr 30(4):338–352

    Article  Google Scholar 

  • Leonelli G, Pelfini M, Battipaglia G, Cherubini P (2009b) Site-aspect influence on climate sensitivity over time of a high-altitude Pinus cembra tree-ring network. Clim Change 96(1–2):185–201

    Article  Google Scholar 

  • Leonelli G, Pelfini M, Morra di Cella U, Garavaglia V (2011) Climate warming and recent treeline shift in the European Alps: the role of geomorphological factors in high-altitude sites. Ambio 40:264–273

    Article  Google Scholar 

  • Liu F, Feng Z (2012) A dramatic climatic transition at ~4000 cal. year BP and its cultural responses in Chinese cultural domains. The Holocene 22(10):1181–1197

    Article  Google Scholar 

  • Luckman BH (1988) Dating the moraines and recession of Athabasca and Dome Glaciers, Alberta, Canada. Arctic Alpine Res 20(1):40–54

    Article  Google Scholar 

  • Luckman BH (2000) The Little Ice Age in the Canadian Rockies. Geomorphology 32(3–4):357–384

    Article  Google Scholar 

  • Magny M, Vannière B, Zanchetta G, Fouache E, Touchais G, Petrika L, Coussot C, Walter-Simonnet A-V, Arnaud F (2009) Possible complexity of the climatic event around 4300–3800 cal. BP in the central and western Mediterranean. Holocene 19:823–833

    Article  Google Scholar 

  • Mavris C, Plötze M, Mirabella A, Giaccai D, Valboa G, Egli M (2011) Clay mineral evolution along a soil chronosequence in an Alpine proglacial area. Geoderma 165:106–117

    Article  CAS  Google Scholar 

  • Mayewski PA, Rohling EE, Stager JC, Karlen W, Maasch KA, Meeker LD, Meyerson EA, Gasse F, van Krevel S, Holmgren K, Lee-Thorp J, Rosqvist G, Rack F, Staubwasser M, Schneider RR, Steig EJ (2004) Holocene climate variability. Quaternary Res 62:243–255

    Article  Google Scholar 

  • Mc Carthy DP, Luckman BH (1993) Estimating ecesis for tree-ring dating of moraines—a comparative-study from the Canadian Cordillera. Arct Alp Res 25:63–68

    Article  Google Scholar 

  • Monegato G, Pini R, Ravazzi C, Reimer P, Wick L (2011) Correlation of Alpine glaciation and global glacioeustatic changes through integrated lake and alluvial stratigraphy in N-Italy. J Quaternary Sci 26(8):791–804

    Article  Google Scholar 

  • Munsell® (1994) Soil color charts, 1994 rev. Ed. Munsell® Color, New Windsor

  • Nicolussi K, Patzelt G (2000) Discovery of early-Holocene wood and peat on the forefield of the Pasterze Glacier, Eastern Alps. Austria. Holocene 10(2):191–199

    Article  Google Scholar 

  • Nicolussi K, Schlüchter C (2012) The 8.2 ka event-Calendar-dated glacier response in the Alps. Geology 40(9):819–822

    Article  Google Scholar 

  • Nicolussi K, Kauffman M, Patzelt G, van der Plicht J, Thurner A (2005) Holocene tree-line variability in the Kauner valley, central Eastern Alps, indicated by dendrochronological analysis of living trees and subfossil logs. Veg Hist Archaeobot 14:221–234

    Article  Google Scholar 

  • Omboni G (1861) I ghiacciai antichi ed il terreno erratico di Lombardia. Vallardi, Milan

  • Orombelli G (2011) Holocene mountain glacier fluctuations: a global overview. Geogr Fis Din Quat 34:17–24

    Google Scholar 

  • Orombelli G, Pelfini M (1985) Una fase di avanzata glaciale nell’Olocene superiore, precedente alla Piccola Glaciazione, nelle Alpi Centrali. Rend Soc Geol It 8:17–20

    Google Scholar 

  • Pelfini M (1988) Contributo alla conoscenza delle fluttuazioni oloceniche del Ghiacciaio dei Forni. Natura Bresciana 24:237–257

    Google Scholar 

  • Pelfini M (1992) Le fluttuazioni glaciali oloceniche nel Gruppo Ortles-Cevedale (settore lombardo). Università degli Studi di Milano. Earth Sc. Dept. PhD thesis IV cycle, 211 p

  • Pelfini M (1999) Dendrogeomorphological study of glacier fluctuations in the Italian Alps during the Little Ice Age. Ann of Glac 28:123–128

    Article  Google Scholar 

  • Pelfini M, Carton A, Bozzoni M, Leonelli G, Martinoli M, Santilli M (2009) Enhancement of glacial and periglacial Geomorphosites based on geomorphological and dendrochronological research. An example from the Trafoi Valley (Ortles—Cevedale Group). Mem Descr Carta Geologica It 87:123–134

    Google Scholar 

  • Perry CA, Hsu KJ (2000) Geophysical, archaeological, and historical evidence support a solar-output model for climate change. PNAS 97(23):12433–12438

    Article  CAS  Google Scholar 

  • Porter SC, Orombelli G (1985) Glacier contraction during the middle Holocene in the western Italian Alps: evidence and implications. Geology 13(4):296–298

    Article  Google Scholar 

  • Preusser F, Blei A, Graf HR, Schlüchter C (2007) Luminescence dating of Würmian (Weichselian) proglacial sediments from Switzerland: methodological aspects and stratigraphical conclusions. Boreas 36:130–142

    Article  Google Scholar 

  • Ravazzi C, Aceti A (2004) The timberline and treeline ecocline altitude during the Holocene Climatic Optimum in the Alps and the Apennines. In: Antonioli F., Vai GB (eds) Lithopaleoenvironmental maps of Italy during the last two climatic extreemes. Explanatory notes, Florence: 32nd International Geological Congress:21–22

  • Ravazzi C, Badino F, Marsetti D, Patera G, Reimer PJ (2012) Glacial to paraglacial history and forest recovery in the Oglio glacier system (Italian Alps) between 26 and 15 ka cal BP. Quat Sci Rev 58:146–161

    Article  Google Scholar 

  • Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Turney CSM, van der Plicht J (2013) IntCal13 and MARINE13 radiocarbon age calibration curves 0-50000 years calBP. Radiocarbon 55(4):1869–1887

    Article  CAS  Google Scholar 

  • Rinn F (2005) TSAPWin—Time Series Analysis and Presentation for Dendrochronology and Related Applications, Version 0.53, User Reference. Heidelberg, 91 pp

  • Roethlisberger F, Schneebeli W (1979) Genesis of lateral moraine complexes, demonstrated by fossil soils and trunks; indicators of post glacial climatic fluctuations. In: Schlüchter C (ed) Moraines and Varves. Balkema, Rotterdam, pp 387–419

    Google Scholar 

  • Sandweiss DH, Maasch KA, Anderson DG (1999) Transitions in the mid-Holocene. Science 283:499

    Article  CAS  Google Scholar 

  • Schweingruber FH (1996) Tree rings and environment. Dendroecology, Verlag Paul Haupt, Bern/Stuttgart, p 609

    Google Scholar 

  • Shroder JF (1980) Dendrogeomorphology; review and new dating techniques of tree-ring dating. Progr Phys Geogr 4:161–188

    Article  Google Scholar 

  • Starnberger R, Rodnight H, Spötl C (2011) Chronology of the Last Glacial Maximum in the Salzach Paleoglacier Area (Eastern Alps). J Quat Sci 26(5):502–510

    Article  Google Scholar 

  • Stokes MA, Smiley TL (1968) An Introduction to Tree-Ring Dating. University of Chicago Press, Chicago, p 73

    Google Scholar 

  • Stoppani A (1865) I dintorni di Santa Caterina ossia le serate dello zio. Legros Felice, Milan

    Google Scholar 

  • Stoppani A (1875) Il Bel Paese. Conversazioni sulle bellezze naturali. La Geologia e la Geografia fisica d’Italia. Ed. Agnelli, Turin, 662 pp

  • Stuiver M, Reimer PJ (1993) Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35:215–230

    Google Scholar 

  • Stuiver M, Reimer PJ, Reimer RW (2014) CALIB Rev 7.0.2 [WWW program and documentation]

  • Tinner W (2007) Treeline studies. In: Scott EA (ed) Encyclopedia of Quaternary Science, Elsevier, pp 2374–2384

  • Trachsel M, Kamenik C, Grosjean M, McCarroll D, Moberg A, Brázdil R, Büntgen U, Dobrovolný P, Esper J, Frank DC, Friedrich M, Glaser R, Larocque-Tobler I, Nicolussi K, Riemann D (2012) Multi-archive summer temperature reconstruction for the European Alps, AD 1053–1996. Quat Sci Rev 46:66–79

    Article  Google Scholar 

  • Walker MJC, Berkelhammer M, Björck S, Cwynar LC, Fisher DA, Long AJ, Lowe JJ, Newnham RM, Rasmussen SO, Weiss H (2012) Formal subdivision of the Holocene Series/Epoch: a Discussion Paper by a Working Group of INTIMATE (Integration of ice-core, marine and terrestrial records) and the Subcommission on Quaternary Stratigraphy (International Commission on Stratigraphy). J Quat Sci 27(7):649–659

    Article  Google Scholar 

  • Walkley A, Black IA (1934) An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38

    Article  CAS  Google Scholar 

  • Zhu HF, Xu P, Shao XM, Luo HJ (2013) Little Ice Age glacier fluctuations reconstructed for the southeastern Tibetan Plateau using tree rings. Quat Int 283:134–138

    Article  Google Scholar 

Download references

Acknowledgments

This study has been developed within the SHARE-Stelvio Project, funded by the Lombardy Region Government, managed by FLA (Lombardy Foundation for the Environment) and EvK2CNR Committee, and led by G. Diolaiuti. Data analysis was also supported by PRIN 2010–2011 (Grant Number 2010AYKTAB_006), local leader Prof. C. Smiraglia and national leader Prof. C. Baroni. We thank the Stelvio National Park-Lombardy sector, F. Meraldi and V. Garavaglia for their support in field activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Pelfini.

Appendix: description of the horizons of the pedosedimentary sequence

Appendix: description of the horizons of the pedosedimentary sequence

A (0–5 cm): very wet; pale olive (5Y 6/4) dry, and olive (5Y 4/3) moist; sandy loam with subangular medium gravel, slightly weathered; medium granular structure, weak; common macropores; few fine roots; gradual to diffuse, smooth boundary to AC1.

AC1 (5–20 cm): moist; light yellowish brown (2.5Y 6/3) dry, and olive (5Y 4/4) moist; sandy loam, with common subangular medium gravel and few subangular coarse gravel, both slightly weathered; fine granular structure, weak; common macropores; few fine roots; gradual to diffuse, smooth boundary to AC2.

AC2 (20–35 cm): moist; olive (5Y 5/4) dry, and olive (5Y 4/3) moist; sandy loam with dominant subangular coarse gravel, weathered; fine granular structure, weak; few macropores; few fine roots; gradual to diffuse, irregular boundary to 2AB.

2AB (35–37 cm): moist; light brownish gray (2.5Y 6/2) dry, and olive (5Y 4/4) moist; silt loam with many subrounded medium gravels weathered; fine granular loose structure, weak; common macropores; few fine roots; gradual to diffuse, smooth boundary to 2CI.

2C1 (37–61 cm): moist; pale olive (5Y 6/3) dry, and olive (5Y 4/4) moist; sandy loam with common subrounded coarse gravels weathered; fine granular structure, weak; few macropores; few fine roots; gradual to diffuse, smooth boundary to 2C2.

2C2 (61–91 + cm); moist; pale olive (5Y 6/4) dry, and olive (5Y 4/4) moist; sandy loam with many subrounded coarse gravels weathered; fine granular structure, weak; few macropores; few fine roots; lower boundary not exposed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pelfini, M., Leonelli, G., Trombino, L. et al. New data on glacier fluctuations during the climatic transition at ~4,000 cal. year BP from a buried log in the Forni Glacier forefield (Italian Alps). Rend. Fis. Acc. Lincei 25, 427–437 (2014). https://doi.org/10.1007/s12210-014-0346-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-014-0346-5

Keywords

Navigation