Rendiconti Lincei

, Volume 25, Supplement 2, pp 129–138 | Cite as

Morphotectonics of the Upper Tiber Valley (Northern Apennines, Italy) through quantitative analysis of drainage and landforms

  • L. MelelliEmail author
  • S. Pucci
  • L. Saccucci
  • F. Mirabella
  • F. Pazzaglia
  • M. Barchi
Intermontane basins in central-southern Italy


We present a geomorphological analysis of the recent extensional tectonics of a Quaternary continental basin in the Northern Apennines (Italy). The study area is focused on Upper Tiber Valley (UTV), a basin elongated for 70 km in NNW-SSE direction hosting the Tiber River. The area is characterized by a series of features that make it an excellent case study: (i) homogeneity of lithology (ii) active faults, and (iii) strong morphogenetic activity. In this study, 36 hydrographical basins, tributaries of Tiber River, have been analysed. A preliminary qualitative geomorphological setting was outlined pointing out that the drainage river network shows meaningful evidence of tectonic control, such as abrupt changes in stream directions, knickpoints and steepness anomalies alignments along meaningful length in adjacent basins. Besides, the tectonic control is well marked in base level changes and consequent tectonically induced downcutting. Signs of neotectonics are highlighted by structural landforms too. The entrenchment of alluvial fans, the triangular facets and the fault planes are mapped by field survey and aerial photo interpretation. In addition, a quantitative analysis was also performed. Linear, areal and volumetric indexes related to drainage basins and river networks are taken into account. The geometry of the escarpments delimiting the basin and the landforms detected along the adjacent piedmont are investigated. The ranges of values, according to the existing literature, confirm a condition of wide-ranging morphological disturbance. In the central part of the study area, while the western basins are almost in equilibrium, the eastern ones reveal clear signs of disequilibrium, this is particularly evident along the distal segment of the river network. These data, joined with the characteristics of the escarpment and piedmont junction, confirm that the neotectonic activity, in the centre and in the eastern side of the basin, is the main factor controlling the morphological system.


Geomorphometry Neotectonic  Tiber basin Umbria region 


  1. Ambrosetti P, Carraro F, Deiana G, Dramis F (1982) Il sollevamento dell’Italia centrale tra il Pleistocene inferiore e il Pleistocene medio. Contributo conclusivo per la realizzazione della Carta Neotettonica d’Italia (II), CNR Progetto Finalizzato “Geodinamica, S.P. Neotettonica”, 356, pp 1341–1343Google Scholar
  2. Ambrosetti P, Carboni MG, Conti MA, Esu D, Girotti O, La Monica GB, Landini B, Parisi G (1987) Il Pliocene ed il Pleistocene del Bacino del fiume Tevere nell’Umbria Meridionale. Geogr Fis Dinam Quat 10:10–33Google Scholar
  3. Barchi MR, Ciaccio MG (2009) Seismic images of an extensional basin, generated at the hanging wall of a low-angle normal fault: the case of the Sansepolcro basin (central Italy). Tectonophysics 479:285–293CrossRefGoogle Scholar
  4. Barchi M, Brozzetti F, Lavecchia G (1991) Analisi strutturale e geometrica dei bacini della media Valle del Tevere e della Valle Umbra. Boll Soc Geol It 110Google Scholar
  5. Bartolini C (2012) Is the morphogenetic role of tectonics overemphasized at times? Bollettino di Geofisica Teorica e Applicata 53(4):459–470Google Scholar
  6. Basilici G (1997) Sedimentary facies in an extensional and deep-lacustrine depositional system: the Pliocene Tiberino basin, central Italy. Sediment Geol 109:73–94CrossRefGoogle Scholar
  7. Belisario F, Del Monte M, Fredi P, Funiciello R, Lupia Palmieri E, Salvini F (1999) Azimuthal analysis of stream orientations to define regional tectonic lines. Fourth International Geomorphology Conference, Bologna. Zeitschrift fur Geomorphologie, Suppl-Bd 118, pp 41–63Google Scholar
  8. Beneduce P, Festa V, Francioso R, Schiattarella M, Tropeano M (2004) Conflicting drainage patterns in the Matera Horst Area southern Italy. Phys chem Earth 29:717–724CrossRefGoogle Scholar
  9. Bull WB (2008) Tectonic geomorphology of mountains: a new approach to paleoseismology. Blackwell, p 316. ISBN-13: 978-1405154796Google Scholar
  10. Bull WB, McFadden L (1977) Tectonic geomorphology north and south of the Garlock fault, California. In: Dohering DO (ed) Geomorphology in arid regions publications in geomorphology. State University of New York, Binghamton, pp 115–138Google Scholar
  11. Cattuto C, Cencetti C, Fisauli M, Gregori L (1995) I bacini pleistocenici di Anghiari e Sansepolcro nell’alta valle del F. Tevere Il Quaternario 8(1):119–128Google Scholar
  12. Ciotoli G, Della Seta M, Del Monte M, Fredi P, Lombardi S, Lupia Palmieri E, Pugliese F (2003) Morphological and geochemical evidence of neotectonics in the volcanic area of Monti Vulsini (Latium, Italy). Quatern Int 101–102(2003):103–113CrossRefGoogle Scholar
  13. Collettini C, Barchi MR (2002) A low-angle normal fault in the Umbria region (central Italy): a mechanical model for the related microseismicity. Tectonophysics 359:97–115CrossRefGoogle Scholar
  14. Conti MA, Girotti O (1977) Villafranchiano del “Lago Tiberino”: ramo sud occidentale, schema stratigrafico e tettonico. Geol Romana 16:67–80Google Scholar
  15. D’Agostino N, Jackson J, Dramis F, Funicello R (2001) Interaction between mantle upwelling, drainage evolution and active normal faulting: an example from the central Apennines (Italy). Geophys J Int 147:475–497CrossRefGoogle Scholar
  16. Delle Donne D, Piccardo L, Odum JK, Stephenson WJ, Williams RA (2007) High-resolution shallow reflection seismic image and surface evidence of the Upper Tiber Basin active faults (Northern Apennines, Italy). Boll Soc Geol Ital 126(2):323–331Google Scholar
  17. Flint JJ (1974) Stream gradient as a function of order, magnitude, and discharge. Water Resour Res 10(5):969–973CrossRefGoogle Scholar
  18. Goudie A (2004) Encyclopedia of geomorphology Vol 2. Taylor and Francis Group Ed, BeijingGoogle Scholar
  19. Horton RE (1945) Erosional development of stream and their drainage basins: hydrophysical approach to quantitative morphology. Geol Soc Am Bull 56:275–370CrossRefGoogle Scholar
  20. Keller EA (1986) Investigation of active tectonics: use of surficial earth processes. In: Wallace RE (ed) Active tectonics studies in Geophysics. National Academies Press, Washington, DC, pp 136–147Google Scholar
  21. Lotti B (1926) Descrizione geologica dell’Umbria. Memorie Descrittive della Carta Geologica d’Italia, 21, p 320Google Scholar
  22. Lupia Palmieri E, Centamore E, Ciccacci S, D’Alessandro L, Del Monte M, Fredi P, Pugliese F (2001) Geomorfologia quantitativa e morfodinamica del territorio abruzzese III–Il bacino idrografico del Fiume Saline. Geogr Fis Dinam Quat 24(2):157–176Google Scholar
  23. Melelli L, Saccucci L, Fiorucci L, Barchi M, Mirabella F, Pazzaglia F, Pucci S (2012) Geomorphological quantitative analysis of high Tiber Valley drainage network (Umbria, Italy). Rend Online Soc Geol It 21, parte II, 1120–1121Google Scholar
  24. Mirabella F, Barchi M, Brozzetti F, Lupattelli A, Melelli L, Saccucci L, Pazzaglia F, Pucci S. (2010) Morphotectonic evolution of a quaternary basin driven by a segmented low-angle extensional system. Rendiconti Online della Società Geologica ItalianaGoogle Scholar
  25. Mirabella F, Brozzetti F, Lupattelli A, Barchi MR (2011) Tectonic evolution of a low-angle extensional fault system from restored cross-sections in the Northern Apennines (Italy). Tectonics, 30, TC6002, doi: 10.1029/2011TC002890
  26. Pucci S, Mirabella F, Pazzaglia F, Barchi MR, Melelli L, Tuccimei P, Soligo M, Saccucci L (2014) Interaction between regional and local tectonic forcing along a complex quaternary extensional basin: Upper Tiber Valley, Northern Apennines, Italy. Quat Sci Rev 102:111–132. doi: 10.1016/j.quascirev.2014.08.009
  27. Sagri M, Martini IP, Pascucci V (2004) Sedimentary and tectonic evolution of selected neogene–quaternary basins of the Apennines (Italy). Field trip guide books, 32nd International Geological Congress, Florence–Italy, 20–28 August 2004. 4, pp 14–36Google Scholar
  28. Schiattarella M, Di Leo P, Beneduce P, Giano SI (2003) Quaternary uplift vs tectonic loading: a case-study from the Lucanian Apennine, southern Italy. Quatern Int 101–102:239–251CrossRefGoogle Scholar
  29. Strahler AN (1980) System theory in general geography. Phys Geogr 1:1–27Google Scholar
  30. Troiani F, Della Seta M (2011) Geomorphological response of fluvial and coastal terraces to quaternary tectonics and climate as revealed by geostatistical topographic analysis. Earth Surf Proc Land 36(9):1193–1208. doi: 10.1002/esp.2145 CrossRefGoogle Scholar
  31. Tucker GE, Whipple KX (2002) Topographic outcomes predicted by stream erosion models: sensitivity analysis and intermodal comparison. J Geophys Res 107(B9):2179CrossRefGoogle Scholar
  32. Whipple KX, Wobus C, Crosby B, Kirby E, Sheehan D (2007) New tools for quantitative geomorphology: extraction and interpretation of stream profiles from digital elevation data. GSA annual meeting, 28 October 2007, special bulletin. Boulder, COGoogle Scholar
  33. Wobus C, Crosby B, Whipple KX (2006) Hanging valleys in fluvial systems: control on occurrence and implications for landscape evolution. J Geophys Res 111:F02017Google Scholar

Copyright information

© Accademia Nazionale dei Lincei 2014

Authors and Affiliations

  • L. Melelli
    • 1
    Email author
  • S. Pucci
    • 2
  • L. Saccucci
    • 3
  • F. Mirabella
    • 1
    • 4
  • F. Pazzaglia
    • 5
  • M. Barchi
    • 1
  1. 1.Dipartimento di Fisica e GeologiaUniversità di PerugiaPerugiaItaly
  2. 2.Istituto Nazionale di Geofisica e VulcanologiaRomeItaly
  3. 3.PerugiaItaly
  4. 4.Istituto di Ricerca per la Protezione IdrogeologicaConsiglio Nazionale delle RicerchePerugiaItaly
  5. 5.IntGeoMod s.r.l.PerugiaItaly

Personalised recommendations