Skip to main content

Advertisement

Log in

Biodiversity of Italian Tamarix spp. populations: their potential as environmental and productive resources

  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

Mediterranean countries are expected to experience a notable increase in average air temperatures and an alteration of precipitation patterns, distribution, intensity and duration, as a result of global climate changes. In this region, wetlands and coastal areas are increasingly at risk, as they are particularly exposed to a range of hazards connected to climate change, such as drought, flooding, and soil salinity. Nevertheless, the species which inhabit these areas are likely to be well adapted to future conditions caused by global warming effects. Among them, Tamarix species have been reported to be highly tolerant to many abiotic stresses including salinity, drought, flooding, and extreme temperatures. Exploring their diversity could be fundamental, as genotypes can be selected for their natural tolerance to some particular stress, and may be conserved and used in restoration practices under the perspectives of global climate changes. Moreover, recent experimental evidence supported the employment of Tamarix spp. as bio-fuel crops. There are eleven Tamarix species in Italy, occupying coastal dunes and the riverbanks of Southern regions. The most widespread species are Tamarix gallica and Tamarix africana. Although they play a fundamental ecological role in dunes’ fixation and in inhabiting salinized areas, which would otherwise be subjected to desertification, they are still not well known. In this study, we introduce Italian Tamarix spp. ecological, physiological, morphological and genetic diversity with the aim of creating awareness as regards their potential use for the recovery of degraded areas in the Mediterranean Basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbruzzese G (2011) Nuovi approcci in Tamarix spp. per l’identificazione tassonomica e la caratterizzazione funzionale in condizioni di stress salino. DPhil dissertation, University of Tuscia, http://hdl.handle.net/2067/2366. Accessed 10 Mar 2011

  • Abbruzzese G, Kuzminsky E, Abou Jaoudé R, Angelaccio C, Eshel A, Scoppola A, Valentini R (2013) Leaf epidermis morphological differentiation between Tamarix africana Poir. and Tamarix gallica L. (Tamaricaceae) with ecological remarks. Plant Biosyst 47:573–582. doi:10.1080/11263504.2012.714805

    Article  Google Scholar 

  • Abou Jaoudé R (2011) Harnessing the biodiversity of Italian Tamarix species: populations, plants and leaf responses to extreme environmental constraint. DPhil dissertation, University of Tuscia, http://hdl.handle.net/2067/2367. Accessed 10 Mar 2011

  • Abou Jaoudé R, de Dato G, De Angelis P (2012) Photosynthetic and wood anatomical responses of Tamarix africana Poiret to water level reduction after short-term fresh- and saline-water flooding. Ecol Res 27:857–866

    Article  Google Scholar 

  • Abou Jaoudé R, de Dato G, Palmegiani M, De Angelis P (2013) Impact of fresh and saline water flooding on leaf gas exchange in two Italian provenances of Tamarix africana Poiret. Plant Biol 15(Suppl. 1):109–117

    Article  Google Scholar 

  • Alpert P, Ben-gai T, Baharad A, Benjamini Y, Yekutieli D, Colacino M, Diodato L, Ramis C, Homar V, Romero R, Michaelides S, Manes A (2002) The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values. Geophys Res Lett 29:1–4

    Article  Google Scholar 

  • Arndt SK, Arampatsis C, Foetzki A, Li X, Zeng F, Zhang X (2004) Contrasting patterns of leaf solute accumulation and salt adaptation in four phreatophytic desert plants in a hyperarid desert with saline groundwater. J Arid Environ 59:259–270

    Article  Google Scholar 

  • Banks MA, Eichert W, Olson JB (2003) Which genetic loci have greater population assignment power? Bioinformatics 19(11):1436–1438

    Article  CAS  Google Scholar 

  • Barbará T, Palma-Silva C, Paggi GM, Bered F, Fay MF, Lexer C (2007) Cross-species transfer of nuclear microsatellite markers: potential and limitations. Mol Ecol 16:3759–3767

    Article  Google Scholar 

  • Barhoumi Z, Djebali W, Smaoui A, Chaïbi W, Abdelly C (2007) Contribution of NaCl excretion to salt resistance of Aeluropus littoralis (Willd) Parl. J Plant Physiol 164:842–850

    Article  CAS  Google Scholar 

  • Baum BR (1978) The genus Tamarix. Israel Academy of Arts and Sciences XII, Jerusalem

    Google Scholar 

  • Bellingham PJ, Sparrow AD (2000) Resprouting as a life history strategy in woody plant communities. Oikos 89:409–416

    Article  Google Scholar 

  • Berry W (1970) Characteristics of salts secreted by Tamarix aphylla. Am J Bot 57(10):1226–1230

    Article  CAS  Google Scholar 

  • Blom CWPM, Voesenek LACJ (1996) Flooding: the survival strategies of plants. Trends Ecol Evol 11:290–295

    Article  CAS  Google Scholar 

  • Brotherson JD, Field D (1987) Tamarix: impacts of a successful weed. Rangelands 9:110–112

    Google Scholar 

  • Calvo E, Simó R, Coma R, Ribes M, Pascual J, Sabatés A, Gili JM, Pelejero C (2011) Effects of climate change on Mediterranean marine ecosystems: the case of the Catalan Sea. Clim Res 50(1):1–29

    Article  Google Scholar 

  • Carter JL, Colmer TD, Veneklaas EJ (2006) Variable tolerance of wetland tree species to combined salinity and waterlogging is related to regulation of ion uptake and production of organic solutes. New Phytol 169:123–133

    Article  CAS  Google Scholar 

  • Castiglione S, Cicatelli A, Lupi R, Patrignani G, Fossati T, Brundu G, Sabatti M, Van Loo M, Lexer C (2010) Genetic structure and introgression in riparian populations of Populus alba L. Plant Biosyst 144:656–668

    Article  Google Scholar 

  • Chapin FS, Chapin MC (1981) Ecotypic differentiation of growth processes in Carex aquatilis along latitudinal and local gradients. Ecology 62:1000–1009

    Article  Google Scholar 

  • Cheng LS (2007) 2. Tamarix Linnaeus, Sp. Pl. 1: 270. 1753. Flora of China 13:59–65

  • Cleverly JR, Smith SD, Sala A, Devitt DA (1997) Invasive capacity of Tamarix ramosissima in a Majove Desert floodplain. The role of drought. Oecologia 111:12–18

    Article  Google Scholar 

  • Colmer TD (2003) Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ 26:17–36

    Article  CAS  Google Scholar 

  • Conti F, Abbate G, Alessandrini A, Blasi C (2005) An annotated checklist of the Italian vascular flora. Palombi Editore, Rome

    Google Scholar 

  • Csurhes S (2008) Pest plant risk assessment: Athel pine—Tamarix spp. The State of Queensland, Department of Primary Industries and Fisheries Publishing. http://www.daff.qld.gov.au/documents/Biosecurity_EnvironmentalPests/IPA-Athel-Pine-Risk-Assessment.pdf. Accessed 26 Mar 2014

  • Day JW, Christian RR, Boesch DM, Yáñez-Arancibia A, Morris J, Twilley RR, Nayor L, Schaffner L, Stevenson C (2008) Consequences of climate change on ecogeomorphology of coastal wetlands. Estuar Coast 31:477–491

    Article  Google Scholar 

  • De Loach CJ, Carruthers RI, Lovich JE, Dudley TL, Smith SD (2000) Ecological interactions in the biological control of saltcedar (Tamarix spp.) in the United States: towards a new understanding. In: Spencer NR (ed) Proceedings of the X International Symposium on Biological Control of Weeds. Montana State University, Montana, pp 819–873

    Google Scholar 

  • De Martis B, Loi MC, Polo MB (1984) Il genere Tamarix L. (Tamaricaceae) in Sardegna. Webbia 37(2):211–235

    Article  Google Scholar 

  • Ding F, Song J, Ruan Y, Wang BS (2009) Comparison of the effects of NaCl and KCl at the roots on seedling growth, cell death and the size, frequency and secretion rate of salt glands in leaves of Limonium sinense. Acta Physiol Plant 31:343–350

    Article  CAS  Google Scholar 

  • Di Tomaso JM (1998) Impact, biology, and ecology of saltcedar (Tamarix spp.) in the Southwestern United States. Weed Technol 12:326–336

    Google Scholar 

  • Drew MC, He CJ, Morgan PW (2000) Programmed cell death and aerenchyma formation in roots. Trends Plant Sci 5:123–127

    Article  CAS  Google Scholar 

  • Dunlap JM, Stettler RF (2001) Variation in leaf epidermal and stomatal traits of Populus trichocarpa from two transects across the Washington Cascades. Can J Bot 79:528–536

    Google Scholar 

  • Dunphy BK, Murphy PG, Lugo AE (2000) The tendency for trees to be multi-stemmed in tropical and subtropical dry forests: studies of Guanica forest, Puerto Rico. Trop Ecol 41:161–167

    Google Scholar 

  • Ensikat HJ, Ditsche-Kuru P, Neinhuis C, Barthlott W (2011) Superhydrophobicity in perfection: the outstanding properties of the lotus leaf. Beilstein J Nanotechnol 2:152–161

    Article  CAS  Google Scholar 

  • Eshel A, Oren I, Alekparov C, Eilam T, Zilberstein A (2011) Biomass production by desert halophytes: alleviating the pressure on the scarce resources of arable soil and fresh water. Eur J Plant Sci Biotech Special Issue 2, Proceedings of the European COST action FA0901, 5:48–53

  • Evans DE (2004) Aerenchyma formation. New Phytol 161:35–49

    Article  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  Google Scholar 

  • Gaskin JF, Schaal BA (2003) Molecular phylogenetic investigation of U.S. invasive Tamarix. Syst Bot 28:86–95

    Google Scholar 

  • Gaskin JF, Pepper AE, Manhart JR (2006) Isolation and characterization of 10 polymorphic microsatellites in saltcedars (Tamarix chinensis and Tamarix ramosissima). Mol Ecol Notes 6:1147–1149

    Article  CAS  Google Scholar 

  • Ginzburg C (1967) Organization of the adventitious root apex in Tamarix aphylla. Am J Bot 54:4–8

    Article  Google Scholar 

  • Glenn E, Tanner R, Mendez S, Kehret T, Moore D, Garcia J, Valdes C (1998) Growth rates, salt tolerance characteristics of native and invasive riparian plants from the delta of Colorado River, Mexico. J Arid Environ 40:271–294

    Article  Google Scholar 

  • Gries D, Foetzki A, Arndt SK, Bruelheide H, Thomas FM, Zhang X, Runge M (2005) Production of perennial vegetation in an oasis-desert transition zone NW China—allometric estimation, and assessment of flooding and use effects. Plant Ecol 181:23–43

    Article  Google Scholar 

  • Hart CH, White LD, McDonald A, Sheng Z (2005) Saltcedar control and water salvage on the Pecos River, Texas, 1999e2003. J Environ Manag 75:399–409

    Article  Google Scholar 

  • Horton JA (1960) The ecology of saltcedar. Proceedings: Arizona Watershed Symposium, 4:19–21

  • IPCC (2007) Contribution of working group I to the fourth assessment report of the Intergovernmental panel on climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007, the physical science basis. Cambridge University Press, USA

    Google Scholar 

  • Kleinkopf GE, Wallace A (1974) Physiological basis for salt tolerance in Tamarix ramosissima. Plant Sci Lett 3:157–163

    Article  CAS  Google Scholar 

  • Knapp EE, Dyer AR (1997) When do genetic considerations require special approaches to ecological restoration? In: Fiedler PI, Kareiva P (eds) Conservation biology for the coming decade. Chapman and Hall, New York, pp 344–363

    Google Scholar 

  • Lamont BB, Markey A (1995) Biogeography of fire-killed and resprouting Banksia species in South-Western Australia. Aust J Bot 43:283–303

    Article  Google Scholar 

  • Lindgren C, Pearce C, Allison K (2010) The biology of invasive alien plants in Canada. 11. Tamarix ramosissima Ledeb., T. chinensis Lour. and hybrids. Can J Plant Sci 90:111–124

    Article  Google Scholar 

  • Manousaki E, Kalogerakis N (2011) Halophytes present new opportunities in phytoremediation applications. Conference Paper. Proceedings of the 35th AMOP Technical Seminar on Environmental Contamination and Response; Vancouver, BC; 5–7 June 2012, pp 91–103

  • Mauseth MJ (1988) Plant anatomy. Benjamin Cummings, California

    Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Nardini A, Salleo S, Lo Gullo MA, Pitt F (2000) Different responses to drought and freeze stress of Quercus ilex L. growing along a latitudinal gradient. Plant Ecol 148:139–147

    Article  Google Scholar 

  • Naresh B, Reddy MS, Vijayalakshmi P, Reddy V, Devi P (2012) Physico–chemical screening of accessions of Jatropha curcas for biodiesel production. Biomass Bioenerg 40:155–161

    Article  CAS  Google Scholar 

  • Natale E, Zalba SM, Oggero A, Reinoso H (2010) Establishment of Tamarix ramosissima under different conditions of salinity and water availability: implications for its management as an invasive species. J Arid Environ 74:1399–1407

    Article  Google Scholar 

  • Neinhuis C, Barthlott W (1997) Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann Bot Lond 79:667–677

    Article  Google Scholar 

  • Nzunda EF, Griffiths ME, Lawes MJ (2007) Multi-stemmed trees in subtropical coastal dune forest: survival strategy in response to chronic disturbance. J Veg Sci 18:693–700

    Article  Google Scholar 

  • Pearce DW, Millard S, Bray DF, Rood SB (2006) Stomatal characteristics of riparian poplar species in a semi-arid environment. Tree Physiol 26:211–218

    Article  Google Scholar 

  • Petit JR, Excoffier L (2009) Gene flow and species delimitation. Trends Ecol Evol 24:386–393

    Article  Google Scholar 

  • Pignatti S (1982) Flora d’Italia—Edagricole, Bologna

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  Google Scholar 

  • Russell PJ (2002) iGenetica. EdiSES s.r.l, Naples

    Google Scholar 

  • Santi G, D’Annibale A, Eshel A, Zilberstein A, Crognale S, Ruzzi M, Valentini R, Moresi M, Petruccioli M (2014) Ethanol production from xerophilic and salt-resistant Tamarix jordanis biomass. Biomass Bioenerg 61:73–81

    Article  CAS  Google Scholar 

  • Shabanimofrad M, Rafii MY, Megat Wahab PE, Biabani AR, Latif MA (2013) Phenotypic, genotypic and genetic divergence found in 48 newly collected Malaysian accessions of Jatropha curcas L. Ind Crop Prod 42:543–551

    Article  CAS  Google Scholar 

  • Smith SD, Devitt DA, Sala A, Cleverly JR, Busch DE (1998) Water relations of riparian plants from warm desert regions. Wetlands 18:687–696

    Article  Google Scholar 

  • Somaru R, Naidoo Y, Naidoo G (2002) Morphology and ultrastructure of the leaf salt glands of Odyssea paucinervis (Stapf) (Poaceae). Flora 197:67–75

    Article  Google Scholar 

  • Sprenger MD, Smith LM, Taylor JP (2001) Testing control of saltcedar seedlings using fall flooding. Wetlands 21:437–441

    Article  Google Scholar 

  • Struwig M, Jordaan A, Siebert SJ (2011) Anatomical adaptations of Boerhavia L. and Commicarpus Standl. (Nyctaginaceae) for survival in arid environments of Namibia. Acta Biol Crac Bot 53:50–58

    Google Scholar 

  • Tallent-Halsell NG, Walker LR (2002) Responses of Salix gooddingii and Tamarix ramosissima to flooding. Wetlands 22:776–785

    Article  Google Scholar 

  • Terzoli S, Beritognolo I, Sabatti M, Kuzminsky E (2010) Development of a novel set of EST-SSR markers and cross-species amplification in Tamarix africana (Tamaricaceae). Am J Bot 97(6):e45–e47

    Article  CAS  Google Scholar 

  • Terzoli S, Abbruzzese G, Beritognolo I, Sabatti M, Valentini R, Kuzminsky E (2014) Genetic characterization of a Tamarix spp. germplasm collection in Italy. Botany 92:360–369

    Article  Google Scholar 

  • Thomson WW, Berry WL, Liu LL (1969) Localization and secretion of salt by the salt glands of Tamarix aphylla. P Natl Acad Sci USA 63:310–317

    Article  CAS  Google Scholar 

  • Triani A (2012) Risposte ecofisiologiche alla salinità in due specie di Tamarix di origine italiana. Master dissertation, University of Tuscia

  • Vandersande MW, Glenn EP, Walworth JL (2001) Tolerance of five riparian plants from the lower Colorado River to salinity drought and inundation. J Arid Environ 49:147–159

    Article  Google Scholar 

  • Venturella G, Baum B, Mandracchia G (2007) The genus Tamarix (Tamaricaceae) in Sicily: first contribution. Flora Mediterr 17:25–46

    Google Scholar 

  • Venturella G, Gargano ML, Mandracchia G (2012) First record of Tamarix meyeri (Tamaricaceae) for western Europe. Plant Biosyst 146(2):484–489

    Article  Google Scholar 

  • Verdú M, Pausas JG, Segarra-Moragues JG, Ojeda F (2007) Burning phylogenies: fire, molecular evolutionary rates, and diversification. Evolution 61:2195–2204

    Article  Google Scholar 

  • Visser EJW, Heijink CJ, Vanhout KJGM, Voesenek LACJ, Barendse GWM, Blom CWPM (1995) Regulatory role of auxin in adventitious root-formation in 2 species of Rumex, differing in their sensitivity to waterlogging. Physiol Plant 93:116–122

    Article  CAS  Google Scholar 

  • Waisel Y (1961) Ecological studies on Tamarix aphylla (L.) Karst. III. The salt economy. Plant Soil 13:356–363

    Article  CAS  Google Scholar 

  • Wang W, Wang R, Yuan Y, Du N, Guo W (2011) Effects of salt and water stress on plant biomass and photosynthetic characteristics of Tamarisk (Tamarix chinensis Lour.) seedlings. Afr J Biotechnol 10:17981–17989

    CAS  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354

    Article  CAS  Google Scholar 

  • Xu H, Li Y (2006) Water-use strategy of three central Asian desert shrubs and their responses to rain pulse events. Plant Soil 28:5–17

    Article  Google Scholar 

  • Yordanova RY, Uzunova AN, Popova LP (2005) Effects of short term soil flooding on stomata behaviour and leaf gas exchange in barley plants. Biol Plant 49:317–319

    Article  Google Scholar 

  • Zhuang L, Chen YN (2006) Physiological responses of three contrasting plant species to groundwater level changes in an arid environment. J Integr Plant Biol 48(5):520–526

    Article  CAS  Google Scholar 

  • Zohary M, (1972) Flora palestina. vol 2. Israel Academy of Sciences and Humanities, Jerusalem

Download references

Acknowledgments

This work was financed by the Italian–Israeli Cooperation on Environmental Research and Development Project “Harnessing the biodiversity of Mediterranean plants for mitigating the effect of climate change and desertification” by The Italian Ministry of Environment Land and Sea and by the University of Tuscia (Project ex-60 % Kuzminsky 2009). The authors thank the overall researchers of Tel Aviv University for introducing us to the “Miracle trees”, as the recently disappeared Prof. Yoav Waisel loved to call Tamarix spp. plants. The authors are grateful to Isacco Beritognolo and Maurizio Sabatti for helpful conversations, to Patrizio De Martis for plant collection management of the Marangone Creek site, to Claudia Mattioni, and Matilde Tamantini for laboratory support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Kuzminsky.

Additional information

Each author has participated and contributed sufficiently to take public responsibility for appropriate portion of the content.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzminsky, E., De Angelis, P., Abou Jaoudé, R. et al. Biodiversity of Italian Tamarix spp. populations: their potential as environmental and productive resources. Rend. Fis. Acc. Lincei 25, 439–452 (2014). https://doi.org/10.1007/s12210-014-0309-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-014-0309-x

Keywords

Navigation