Skip to main content
Log in

Cosmic ray physics in space: from fundamental physics to applications

  • COSMIC RADIATION: Sino-Italian Cooperation
  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

One hundred years after their discovery by Victor Hess, cosmic rays are nowadays subject of intense research from space-based detectors, able to perform for the first time high precision measurement of their composition and spectra as well as of isotropy and time variability. On May 2011, the alpha magnetic spectrometer (AMS-02) has been installed on the International Space Station, to measure with high accuracy the cosmic ray properties searching for rare events which could be an indication of the nature of dark matter or presence of nuclear antimatter. AMS-02 is the result of nearly two decades of effort of an international collaboration, involving in particular Chinese and Italian scientists, to design and build a state of the art detector capable to perform high precision cosmic rays measurement. In this paper, I will briefly report on the first results of AMS-02 as well as about two cosmic rays researches related researches which are spinoffs of the AMS technology development: utilization of superconductivity in space to develop magnetic shields capable to protect the astronauts from the intense dose of radiation collected during an interplanetary mission and study of the lithospheric–magnetospheric interactions linking seismology to cosmic rays in the context of the Sino-Italian collaboration on the China seismo-electromagnetic satellite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ackermann M et al (2012) Measurement of separate cosmic-ray electron and positron spectra with the fermi large area telescope. Phys Rev Lett 108:011103

    Article  CAS  Google Scholar 

  • Adriani O et al (2009) An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV. Nature 458:607

    Article  CAS  Google Scholar 

  • Adriani O et al (2010) A statistical procedure for the identification of positrons in the PAMELA experiment. Astropart Phys 34:1

    Article  Google Scholar 

  • Aguilar M et al (2002) The alpha magnetic spectrometer (AMS) on the International Space Station: part I—results from the test flight on the space shuttle. Phys Rep 366:331–405

    Article  CAS  Google Scholar 

  • Aguilar M et al (2007) Cosmic-ray positron fraction measurement from 1 to 30 GeV with AMS-01. Phys Lett B 646:145

    Article  CAS  Google Scholar 

  • Aguilar M et al (2013) First result from the alpha magnetic spectrometer on the International Space Station: precision measurement of the positron fraction in primary cosmic rays of 0.5–350 GeV. Phys Rev Lett 110:141102

    Article  Google Scholar 

  • Aleksandrin SY et al (2003) High-energy charged particle bursts in the near-earth space as earthquake precursors. Ann Geophys 21:597–602

    Article  Google Scholar 

  • Asaoka Y et al (2002) Measurements of cosmic-ray low-energy antiproton and proton spectra in a transient period of solar field reversal. Phys Rev Lett 88–5:051101

    Article  Google Scholar 

  • Bakaldin AV et al (2007) Satellite experiment ARINA for studying seismic effects in the high-energy particle fluxes in the earth’s magnetosphere. Cosmic Res 45:445B

    Article  Google Scholar 

  • Baker DN et al (2004) An extreme distortion of the Van Allen belt arising from the ‘Halloween’ solar storm in 2003. Nature 432:878–881

    Article  CAS  Google Scholar 

  • Battiston R (2008) The antimatter spectrometer (AMS-02): a particle physics detector in space. Nucl Instrum Method A588:227–234

    Article  Google Scholar 

  • Battiston R, Burger WJ, Ostaptchouk A, Schael S (2010) Aiglon, a magnetic spectrometer for low energy electrons. Nuclear Instrum Methods Phys Res Sect A: Accelerators, Spectrometers, Detectors and Assoc Equipment. 617(1):467–470

    Article  CAS  Google Scholar 

  • Battiston R et al (2011) Superconductive magnet for radiation shielding of human spacecraft, final report ESTEC Contract N 4200023087/10/NL/AF, arXiv: 1209.1907

  • Battiston R, Vitale V (2013) First evidence for correlations between electron fluxes measured by NOAA-POES satellites and large seismic events. Nuclear Physics B (Proc Suppl) 243–244:249–257

    Article  Google Scholar 

  • Beatty JJ et al (2004) New measurement of the cosmic-ray positron fraction from 5 to 15 GeV. Phys Rev Lett 93:241102

    Article  CAS  Google Scholar 

  • Bertucci B, AMS Collaboration (2013) Precision measurement of the e+ + e spectrum with AMS, Proceedings 33rd ICRC, Rio de Janeiro

  • Boezio M et al (2001) Measurements of cosmic-ray electrons and positrons by the wizard/caprice collaboration. Adv Sp Res 27–4:669

    Article  Google Scholar 

  • Casaus J, AMS Collaboration (2013) Precision measurement of the cosmic ray boron-to-carbon ratio with AMS, Proceedings 33rd ICRC, Rio de Janeiro

  • Choutko V, AMS Collaboration (2013) Precision measurement of the cosmic ray helium flux with AMS experiment, Proceedings 33rd ICRC, Rio de Janeiro

  • Choutko V, Hofer H, Ting SCC (2004) The AMS experiment and magnet Faraday cage for human space exploration. NASA Active Radiation Shielding Workshop, Ann Arbor

    Google Scholar 

  • Delahaye T et al (2009) Galactic secondary positron flux at the Earth. Astron Astrophys 501:821

    Article  Google Scholar 

  • DuVernois MA et al (2001) Cosmic-ray electrons and positrons from 1 to 100 GeV: measurements with HEAT and their interpretation. Astrophys J 559:296

    Article  CAS  Google Scholar 

  • Evans DS, Greer MS (2000) Polar Orbiting Environmental Satellite Space Environment Monitor-2: Instrument Descriptions and Archive Data Documentation. NOAA Technical Memorandum OAR SEC-93, Boulder CO

  • Golden R et al (1996) Measurement of the positron to electron ratio in the cosmic rays above 5 GeV. Astrophys J 457:L103

    Article  CAS  Google Scholar 

  • Guo X et al (2010) Variation charcteristics of OLR for the Wenchuan earthquake. Chin J GeoPhys 53(6):980

    Article  Google Scholar 

  • Haino S, AMS Collaboration (2013) Precision measurement of the proton flux with AMS, Proceedings 33rd ICRC, Rio de Janeiro

  • Hoffman J, Fisher P, Batishchev O (2005) Use of superconducting magnet technology for astronauts radiation protection, NIAC Phase 1 Final Report

  • Imhof WL, Reagan JB, Gaines EE, Anderson RR (1981) High-resolution spectral features observed in the inner radiation belt trapped electron population. J Geophys Res 86:11225

    Article  Google Scholar 

  • Imhof WL, Reagan JB, Voss HD et al (1983) Direct observation of radiation belt electrons precipitation by the controlled injection of VLF signals from a ground-based transmitter. Geophys Res Lett 10:361

    Article  Google Scholar 

  • Mauk BH, Fox NJ, Kanekal SG, Kessel RL, Sibeck DG, Ukhorskiy A (2012) Science objectives and rationale for the radiation belt storm probes mission. Space Sci. Rev

  • Meinke RB, Ball MJ, Goodzeit CL (2003) Superconducting double-helix accelerator Magnets, IEEE Proceedings of PAC 03, Vol. 3, 1996

  • Millan RM, Thorne RM (2007) Review of radiation belt relativistic electron losses. J Atmos Solar Terr Phys 69:362–377

    Article  Google Scholar 

  • Moskalenko I, Strong A (1998) Production and propagation of cosmic-ray positrons and electrons. Astrophys J 493:697–707

    Article  Google Scholar 

  • Nemec F et al (2008) Spacecraft observation of electromagnetic perturbations connected with seismic ativity. Geophys Res Lett 35:L05109

    Article  Google Scholar 

  • Oliva A, AMS Collaboration (2013) Precision measurement of the cosmic ray boron-to-carbon ratio with AMS, Proceedings 33rd ICRC, Rio de Janeiro

  • Ouzounov D et al (2011) Atmosphere-ionosphere response to the M9 Tohoku earthquake revealed by joined satellite and ground observations. Preliminary results, arXiv: 1105.2841

  • Parrot M et al (2002) The micro-satelitte DEMETER. J Geodyn 33:535

    Article  Google Scholar 

  • Pisa D et al (2012) Attenuation of electromagnetic waves at the frequency ~1.7 kHz in the upper ionosphere observed by the DEMETER satellite in the vicinity of earthquakes. Ann Geophys 55:1

    Google Scholar 

  • Schael S, AMS Collaboration (2013) Precision measurements of the electron spectrum and the positron spectrum with AMS, Proceedings 33rd ICRC, Rio de Janeiro

  • Serpico PD (2012) Astrophysical models for the origin of the positron ‘excess’. Astropart Phys 39–40:2

    Article  Google Scholar 

  • Sgrigna V et al (2005) Correlations between earthquakes and anomalous particle bursts from SAMPEX, PET satellite observations. J Atmos Sol Terr Phys 67:1448S

    Article  Google Scholar 

  • Spillantini P (2010) Active shielding for long duration interplanetary manned missions. Adv Space Res 43:900–916

    Article  Google Scholar 

  • Turner DL et al (2012) Explaining sudden losses of outer radiation belt electrons during geomagnetic storms. Nat Phys 8:208–212

    Article  CAS  Google Scholar 

  • Usoskin I et al (2011) Solar modulation parameter for cosmic rays since 1936 reconstructed from ground-based neutron monitors and ionization chambers. J Geophys Res 116:A02104

    Google Scholar 

  • von Braun W (1969) Will mighty magnets protect voyagers to planets? Popular Sci 194(1):98–100

    Google Scholar 

  • Westover SC, Meinke RB, Battiston R, Burger WJ, Van Sciver S Washburn S (2012) Magnet architectures and active radiation shield study, NIAC phase 1 final report

  • Wang L, Shen X, Yuan S, Zhang Y, Yan R (2011) The progress report of China electromagnetic satellite Plan. Satell Appl 20(6):481–490

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Battiston.

Additional information

This contribution is the written, peer-reviewed version of a paper presented at the workshop “Cosmic Rays and Radiobiology in a Sino-Italy Network Strategy: First Bilateral Workshop COSMIC-RAD” held at Institute of Modern Physics, Chinese Academic of Science, in Lanzhou, Gansu Province, China on September 3–4, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Battiston, R. Cosmic ray physics in space: from fundamental physics to applications. Rend. Fis. Acc. Lincei 25 (Suppl 1), 97–105 (2014). https://doi.org/10.1007/s12210-014-0293-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-014-0293-1

Keywords

Navigation