Rendiconti Lincei

, Volume 25, Issue 1, pp 59–70 | Cite as

Glaciers and ice sheets: current status and trends

Anthropocene - Natural and man-made alterations of the Earth

Abstract

About 10 % of the land surface on Earth is covered by glacier ice, with an estimated total volume equivalent to about 66 m of potential sea-level rise. Almost the totality (99 %) of this volume is locked in the polar ice sheets, while less than 1 % forms all the other mountain glaciers and ice caps. In the last three decades, the general retreat of the mountain glaciers and the accelerated flow and ice loss from several outlet glaciers draining the Greenland and the Antarctic ice sheets came to general attention as a major evidence of climate warming and as a potential contribution to the sea-level rise, to local shortage of water resources and to other environmental risks. Here, we present a short review of the most recent data and assessments on the present status and on trends of glaciers and polar ice sheets. The Greenland ice sheet (12 % of total glacier ice volume) over the last three decades showed an increase of the extent of the surface melt area and an acceleration of many marine-terminating glaciers; as a consequence, the ice sheet is losing ice at an increasing rate that reached −263 ± 30 Gt/year in the 2005–2010 time interval, equivalent to a sea-level rise of 0.72 ± 0.08 mm/year. The much larger, higher and colder composite Antarctic ice sheet (87 % of total glacier ice volume), in the same 2005–2010 time interval, had an ice loss of −81 ± 37 Gt/year. Mountain glaciers and ice caps are retreating in all the major glacierized regions, with the exception of a few mountain areas where contrasting patterns have been observed. Although containing less than 1 % of the total glacier ice, mountain glaciers and ice caps suffered a total ice loss of −259 ± 28 Gt/year in the period 2003–2009, equivalent to a sea-level rise of 0.71 ± 0.08 mm/year. The overall contribution of glaciers and ice sheets is estimated equivalent to a sea-level rise of 1.50 ± 0.16 mm/year for the period 2003–2009, or about 60 % of the total sea-level rise in the same period. Various estimates of the total glacier contribution to the sea-level rise by the end of the twenty-first century have been recently proposed, ranging from a few decimeters to 2 m, with most plausible projections at about 0.5 m. Most probably Greenland, the Antarctic Peninsula and the West Antarctic ice sheet will continue to lose ice, while the sign of the East Antarctica contribution is uncertain. Mountain glaciers will most likely continue to lose ice, although at different rates in the various mountain regions. For the European Alps and the Southern Alps (New Zealand), a loss of more than 70 % of their present volume is expected by the end of the twenty-first century. The glaciers’ contraction in the mountain areas may cause slope failures, debris mobilization, outburst floods from glacial lakes, and water deficits, particularly in the summer season, in the arid zones in the coming decades. Together with other changes occurring in the cryosphere such as the Arctic sea-ice reduction, the snow cover decline and the permafrost degradation, the glacier retreat is considered part of a larger picture of environmental changes, directly or indirectly caused or increased by the human impact, leading to new environmental conditions, thus deserving to be indicated as the Anthropocene. Still more open to future responses is the consideration if the ongoing glacier reduction and the rise of the sea level will contribute to leave such a footprint in the geologic record as to require a new stratigraphic unit, a new time epoch in the billion years long history of the Earth.

Keywords

Glaciers Ice sheets Mass balance Sea-level rise Anthropocene 

References

  1. Abram NJ, Mulvaney R, Wolff EW, Triest J, Kipfstuhl S, Trusel LD, Vimeux F, Fleet L, Arrowsmith C (2013) Acceleration of snow melt in an Antarctic Peninsula ice core during the twentieth century. Nat Geosci 6:404–411CrossRefGoogle Scholar
  2. Alley R, Anandakrishnan S (1995) Variations in melt-layer frequency in the GISP2 ice core: implications for Holocene summer temperatures in Greenland. Ann Glaciol 21:64–70Google Scholar
  3. Allison I, Alley RB, Fricker HA, Thomas RH, Warner RC (2009) Ice sheet mass balance and sea level. Antarct Sci 21:413–426CrossRefGoogle Scholar
  4. Arendt AA (2011) Assessing the status of Alaska’s glaciers. Science 332:1044–1045CrossRefGoogle Scholar
  5. Arendt A, Bolch T, Cogley JG, Gardner A, Hagen JO, Hock R, Kaser G, Pfeffer WT, Moholdt G, Paul F, Radić V, Andreassen L, Bajracharya S, Beedle M, Berthier E, Bhambri R, Bliss A, Brown I, Burgess E, Burgess D, Cawkwell F, Chinn T, Copland L, Davies B, De Angelis H, Dolgova E, Filbert K, Forester R, Fountain A, Frey H, Giffen B, Glasser N, Gurney S, Hagg W, Hall D, Haritashya UK, Hartmann G, Helm C, Herreid S, Howat I, Kapustin G, Khromova T, Kienholz C, Koenig M, Kohler J, Kriegel D, Kutuzov S, Lavrentiev I, LeBris R, Lund J, Manley W, Mayer C, Miles E, Li X, Menounos B, Mercer A, Moelg N, Mool P, Nosenko G, Negrete A, Nuth C, Pettersson R, Racoviteanu A, Ranzi R, Rastner P, Rau F, Raup BH, Rich J, Rott H, Schneider C, Seliverstov Y, Sharp M, Sigurðsson O, Stokes C, Wheate R, Winsvold S, Wolken G, Wyatt F, Zheltyhina N (2012) Randolph Glacier Inventory [v2.0]: a dataset of global glacier outlines. Global Land Ice Measurements from Space, Boulder Colorado, USA. Digital Media, http://www.glims.org/RGI/RGI_Tech_Report_V2.0.pdf
  6. Aubert E (1860) La Vallée d’Aoste. Amyot, ParisGoogle Scholar
  7. Bahr DB, Dyurgerov M, Meier MF (2009) Sea-level rise from glaciers and ice caps: a lower bound. Geophys Res Lett 36:L03501. doi:10.1029/2008GL036309 CrossRefGoogle Scholar
  8. Bales RC, Guo Q, Shen D, McConnell JR, Du G, Burkhart JF, Spikes VB, Hanna E, Cappelen J (2009) Annual accumulation for Greenland updated using ice core data developed during 2000–2006 and analysis of daily coastal meteorological data. J Geophys Res 114:D06116. doi:10.1029/2008JD011208 Google Scholar
  9. Bamber JL, Aspinall WP (2013) An expert judgement assessment of future sea level rise from the ice sheets. Nat Clim Chang 3:424–427CrossRefGoogle Scholar
  10. Bamber JL, Griggs JA, Hurkmans RTWL, Dowdeswell JA, Gogineni SP, Howat I, Mouginot J, Paden J, Palmer S, Rignot E, Steinhage D (2013) A new bed elevation dataset for Greenland. Cryosphere 7:499–510CrossRefGoogle Scholar
  11. Baraer M, Mark BG, McKenzie JM, Condom T, Bury J, Huh K-I, Portocarrero C, Gómez J, Rathay S (2012) Glacier recession and water resources in Peru’s Cordillera Blanca. J Glaciol 58:134–150CrossRefGoogle Scholar
  12. Bauder A, Rüegg R (2009) The Swiss Glaciers—2003/04 and 2004/05. Swiss Academy of Science. http://glaciology.ethz.ch/messnetz/downloadPubs/glrep_125-126.pdf
  13. Bengtsson L, Crutzen PJ, Ramanathan V (2011) Fate of mountain glaciers in the Anthropocene. Pontifical Academy of Sciences. http://catholicclimatecovenant.org/wp-content/uploads/2011/05/Pontifical-Academy-of-Sciences_Glacier_Report_050511_final.pdf
  14. Bhattacharya I, Jezek KC, Wang L, Liu H (2009) Surface melt area variability of the Greenland ice sheet: 1979–2008. Geophys Res Lett 36:L20502. doi:10.1029/2009GL039798 CrossRefGoogle Scholar
  15. Björnsson H, Pálsson F, Gudmundsson SW, Magnússon E, Adalgeirsdóttir G, Jóhannesson T, Berthier E, Sigurdsson O, Thorsteinsson T (2013) Contribution of Icelandic ice caps to sea level rise: trends and variability since the Little Ice Age. Geophys Res Lett 40:1–5. doi:10.1002/grl.50278 Google Scholar
  16. Bolch T, Kulkarni A, Kääb A, Huggel C, Paul F, Cogley JG, Frey H, Kargel JS, Fujita K, Scheel M, Bajracharya S, Stoffel M (2012) The state and fate of Himalayan glaciers. Science 336:310–314CrossRefGoogle Scholar
  17. Bolch T, Sandberg Sørensen L, Simonsen SB, Mölg N, Machguth H, Rastner P, Paul F (2013) Mass loss of Greenland’s glaciers and ice caps 2003–2008 revealed from ICESat laser altimetry data. Geophys Res Lett 40:875–881CrossRefGoogle Scholar
  18. Bradley RS, Vuille M, Diaz HF, Vergara W (2006) Threats to water supplies in the Tropical Andes. Science 312:1755–1756CrossRefGoogle Scholar
  19. British Antarctic Survey (2005) Antarctic factsheet, geographical statistics. http://www.antarctica.ac.uk/about_antarctica/
  20. Bromwich DH, Nicolas JP, Monaghan AJ, Lazzara MA, Keller LM, Weidner GA, Wilson AB (2012) Central West Antarctica among the most rapidly warming regions on Earth. Nat Geosci. doi:10.1038/NGEO1671 Google Scholar
  21. Carturan L, Baroni C, Becker M, Bellin A, Cainelli O, Carton A, Casarotto C, Dalla Fontana G, Godio A, Martinelli T, Salvatore MC, Seppi R (2013) Decay of a long-term monitored glacier: the Careser Glacier (Ortles-Cevedale, European Alps). Cryosph Discuss 7:3293–3335CrossRefGoogle Scholar
  22. Casassa G, Rivera A, Haeberli W, Jones G, Kaser G, Ribstein P, Schneider C (2007) Current status of Andean glaciers. Glob Planet Chang 59:1–9CrossRefGoogle Scholar
  23. Centre National d’Etudes Spatiales (2013) Mean Sea Level rise. http://www.aviso.oceanobs.com
  24. Chen JL, Wilson CR, Tapley BD, Blankenship DD, Ivins ER (2007) Patagonia ice field melting observed by gravity recovery and climate experiment (GRACE). Geophys Res Lett 34. doi:10.1029/2007GL031871
  25. Chen L, Johannessen OM, Wang H, Ohmura A (2011) Accumulation over the Greenland ice sheet as represented in reanalysis data. Adv Atmos Sci 28:1030–1038CrossRefGoogle Scholar
  26. Church JA, White NJ (2011) Sea level rise from the late 19th to the early 21st century. Surv Geophys 32:586–602CrossRefGoogle Scholar
  27. Cogley J (2009) Geodetic and direct mass-balance measurements: comparison and joint analysis. Ann Glaciol 50:96–100CrossRefGoogle Scholar
  28. Cook AJ, Vaughan DG (2010) Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years. Cryosphere 4:77–98CrossRefGoogle Scholar
  29. Das I, Bell RE, Scambos TA, Wolovick M, Creyts TT, Studinger M, Frearson N, Nicolas JP, Lenaerts JTM, van de Broeke MR (2013) Influence of persistent wind scour on the surface mass balance of Antarctica. Nat Geosci. doi:10.1038/NGEO1766 Google Scholar
  30. Farinotti D, Huss M, Bauder A, Funk M (2009) An estimate of the glacier ice volume in the Swiss Alps. Glob Plan Ch 68:225–231CrossRefGoogle Scholar
  31. Fettweis X, Tedesco M, van de Broeke M, Etteman J (2011) Melting trends over the Greenland ice sheet (1958–2009) from spaceborne microwave data and regional climate models. Cryosphere 5:359–375CrossRefGoogle Scholar
  32. Flanner MG, Shell KM, Barlage M, Perovich DK, Tschudi MA (2011) Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008. Nat Geosci 4:151–155CrossRefGoogle Scholar
  33. Fretwell P, Pritchard HD, Vaughan DG, Bamber JL, Barrand NE, Bell R, Bianchi C, Bingham RG, Blankenship DD, Casassa G, Catania G, Callens D, Conway H, Cook AJ, Corr HFG, Damaske D, Damm V, Ferraccioli F, Forsberg R, Fujita S, Gim Y, Gogineni P, Griggs JA, Hindmarsh RCA, Holmlund P, Holt JW, Jacobel RW, Jenkins A, Jokat W, Jordan T, King EC, Kohler J, Krabill W, Riger-Kusk M, Langley KA, Leitchenkov G, Leuschen C, Luyendyk BP, Matsuoka K, Mouginot J, Nitsche FO, Nogi Y, Nost OA, Popov SV, Rignot E, Rippin DM, Rivera A, Roberts J, Ross N, Siegert MJ, Smith AM, Steinhage D, Studinger M, Sun B, Tinto BK, Welch BC, Wilson D, Young DA, Xiangbin C, Zirizzotti A (2013) Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7:375–393CrossRefGoogle Scholar
  34. Frezzotti M, Urbini S, Proposito M, Scarchilli C, Gandolfi S (2007) Spatial and temporal variability of surface mass balance near Talos Dome, East Antarctica. J Geophys Res 112:F02032. doi:10.1029/2006JF000638 Google Scholar
  35. Frezzotti M, Scarchilli C, Becagli S, Proposito M, Urbini S (2013) A synthesis of the Antarctic surface mass balance during the last 800 yr. Cryosphere 7:303–319CrossRefGoogle Scholar
  36. Gardelle J, Berthier E, Arnaud Y (2012) Slight mass gain of Karakoram glaciers in the early twenty-first century. Nat Geosci 5. doi:10.1038/NGEO1450
  37. Gardner AS, Moholdt G, Wouters B, Wolken GJ, Burgess DO, Sharp MJ, Cogley JG, Braun C, Labine C (2011) Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago. Nature 473:357–360CrossRefGoogle Scholar
  38. Gardner AS, Moholdt G, Cogley JG, Wouters B, Arendt AA, Wahr J, Berthier E, Hock R, Pfeffer WT, Kaser G, Ligtenberg SRM, Bolch T, Sharp MJ, Hagen JO, van de Broeke MR, Paul F (2013) A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340:852–857CrossRefGoogle Scholar
  39. Glasser NF, Harrison S, Jansson KN, Anderson K, Cowley A (2011) Global sea-level contribution from the Patagonian Icefields since the Little Ice Age maximum. Nat Geosci 4:303–307CrossRefGoogle Scholar
  40. Grinsted A (2013) An estimate of global glacier volume. Cryosphere 7:141–151CrossRefGoogle Scholar
  41. Haeberli W, Zemp M, Kääb A, Paul F, Hoelzle M (2008) Fluctuations of glaciers 2000–2005. IUGGS–UNEP–UNESCOGoogle Scholar
  42. Haeberli W, Paul F, Zemp M (2013) Vanishing glaciers in the European Alps. In: Crutzen PJ, Bengtsson L, Ramanathan V (eds) Fate of mountain glaciers in the Anthropocene. Pontifical Academy of Sciences Scripta Varia 118Google Scholar
  43. Hanna E, Navarro FJ, Pattyn F, Domingues CM, Fettweis X, Ivins ER, Nicholls RJ, Ritz C, Smith B, Tulaczyk S, Withehouse PL, Zwally HJ (2013) Ice-sheet mass balance and climate change. Nature 498:51–59CrossRefGoogle Scholar
  44. Harper J, Humphrey N, Pfeffer WT, Fettweis X (2012) Greenland ice-sheet contribution to sea-level rise buffered by meltwater storage in firn. Nature 491:240–243CrossRefGoogle Scholar
  45. Howat IM, Joughin I, Scambos TA (2007) Rapid changes in ice discharge from Greenland outlet glaciers. Science 315:1559–1561CrossRefGoogle Scholar
  46. Huggel C (2008) Recent extreme slope failures in glacial environments: effects of thermal perturbation. Quat Sci Rev 28:1119–1130CrossRefGoogle Scholar
  47. Huss M, Farinotti D (2012) Distributed ice thickness and volume of all glaciers around the globe. J Geophys Res 117:F04010. doi:10.1029/2012JF002523 Google Scholar
  48. Huss M, Farinotti D, Bauder A, Funk M (2008) Modelling runoff from highly glacierized alpine drainage basins in a changing climate. Hydrol Process 22:3888–3902CrossRefGoogle Scholar
  49. Huss M, Hock R, Bauder A, Funk M (2010) 100-year mass changes in the Swiss Alps linked to the Atlantic Multidecadal Oscillation. Geophys Res Lett 37:L10501. doi:10.1029/2010GL042616 CrossRefGoogle Scholar
  50. Jacob T, Wahr J, Pfeffer WT, Swenson S (2012) Recent contributions of glaciers and ice caps to sea level rise. Nature 482:514–518CrossRefGoogle Scholar
  51. Joughin I, Alley RB, Holland DM (2012) Ice-sheet response to oceanic forcing. Science 338:1172–1176CrossRefGoogle Scholar
  52. Kaab A, Berthier E, Nuth C, Gardelle J, Arnaud Y (2012) Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 488:495–498CrossRefGoogle Scholar
  53. Kargel JS, Ahlstrøm AP, Alley RB, Bamber JL, Benham TJ, Box JE, Chen C, Christoffersen P, Citterio M, Cogley JG, Jiskoot H, Leonard GJ, Morin P, Scambos T, Sheldon T, Willis I (2012) Greenland’s shrinking ice cover: “fast times” but not that fast. Cryosphere 6:533–537CrossRefGoogle Scholar
  54. Kaser G, Grosshauser M, Marzeion B (2010) Contribution potential of glaciers to water availability in different climate regimes. Proc Nat Acad Sci 107:20223–20227CrossRefGoogle Scholar
  55. King MA, Bingham RJ, Moore P, Whitehouse PL, Bentley MJ, Milne GA (2012) Lower satellite-gravimetry estimates of Antarctic sea-level contribution. Nature. doi:10.1038/nature121621 Google Scholar
  56. Kjær KH, Khan SA, Korsgaard NJ, Wahr J, Bamber JL, Hurkmans R, van den Broeke M, Timm LH, Kjeldsen KK, Bjørk AA, Larsen NK, Jørgensen LT, Færch-Jensen A, Willerslev E (2012) Aerial photographs reveal late-20th-century dynamic ice loss in Northwestern Greenland. Science 337:569–573CrossRefGoogle Scholar
  57. Koch J, Menounos B, Clague JJ (2009) Glacier change in Garibaldi Provincial Park, southern Coast Mountains, British Columbia, since the Little Ice Age. Glob Planet Chang 66:161–178CrossRefGoogle Scholar
  58. Kuipers Munneke P, Picard G, van den Broeke MR, Lenaerts JTM, van Meijgaard E (2012) Insignificant change in Antarctic snowmelt volume since 1979. Geophys Res Lett 39:L01501. doi:10.1029/2011GL050207 CrossRefGoogle Scholar
  59. Levermann A, Bamber JL, Drijfhout S, Ganopolski A, Haeberli W, Harris NRP, Huss M, Krüger K, Lenton TM, Lindsay RW, Notz D, Wadhams P, Weber S (2012) Potential climatic transitions with profound impact on Europe. Clim Chang 110:845–878CrossRefGoogle Scholar
  60. Meier MF, Dyurgerov MB, Rick UK, O’Neel S, Pfeffer WT, Anderson RS, Anderson SP, Glazovsky AF (2007) Glaciers dominate eustatic sea-level rise in the 21st century. Science 317:064–1067CrossRefGoogle Scholar
  61. Moholdt G, Wouters B, Gardner AS (2012) Recent mass changes of glaciers in the Russian High Arctic. Geophys Res Lett 39:L10502. doi:10.1029/2012GL051466 CrossRefGoogle Scholar
  62. Monaghan AJ, Bromwich DH, Fogt RL, Wang S-H, Mayewski PA, Dixon DA, Ekaykin A, Frezzotti M, Goodwin I, Isaksson E, Kaspari SD, Morgan VI, Oerter H, Van Ommen TD, Van der Veen CJ, Wen J (2006) Insignificant change in Antarctic snowfall since the International Geophysical Year. Science 313:827–831CrossRefGoogle Scholar
  63. Moon T, Joughin I, Smith B, Howat I (2012) 21st-century evolution of Greenland outlet glacier velocities. Science 336:576–578CrossRefGoogle Scholar
  64. Nghiem SV, Hall DK, Mote TL, Tedesco M, Albert MR, Keegan K, Shuman CA, DiGirolamo NE, Neumann G (2012) The extreme melt across the Greenland ice sheet in 2012. Geophys Res Lett 39:L20502. doi:10.1029/2012GL053611 CrossRefGoogle Scholar
  65. Nick FM, Vieli A, Andersen ML, Joughin I, Payne A, Edwards TL, Pattyn F, van de Wal RS (2013) Future sea-level rise from Greenland’s main outlet glaciers in a warming climate. Nature 497:235–238CrossRefGoogle Scholar
  66. Orombelli G (2011) Holocene mountain glacier fluctuations: a global overview. Geografia Fisica e Dinamica Quaternaria 34:17–24Google Scholar
  67. PAGES 2k Consortium (2013) Continental-scale temperature variability during the past two millennia. Nat Geosci 6:339–346CrossRefGoogle Scholar
  68. Payne AJ, Vieli A, Shepherd AP, Wingham DJ, Rignot E (2004) Recent dramatic thinning of largest West Antarctic ice stream triggered by oceans. Geophys Res Lett 31:L23401. doi:10.1029/2004GL021284 CrossRefGoogle Scholar
  69. Pfeffer WT, Harper JT, O’Neel S (2008) Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science 321:1340–1343CrossRefGoogle Scholar
  70. Price SF, Payne AJ, Howat IM, Smith BE (2011) Committed sea-level rise for the next century from Greenland ice sheet dynamics during the past decade. PNAS 108:8978–8983CrossRefGoogle Scholar
  71. Pritchard HD, Arthern RJ, Vaughan DG, Edwards LA (2009) Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461:971–975CrossRefGoogle Scholar
  72. Pritchard HD, Ligtenberg SRM, Fricker HA, Vaughan DG, van den Broeke MR, Padman L (2012) Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484:502–505CrossRefGoogle Scholar
  73. Rabatel A, Francou B, Soruco A, Gomez J, Cáceres B, Ceballos JL, Basantes R, Vuille M, Sicart J-E, Huggel C, Scheel M, Lejeune Y, Arnaud Y, Collet M, Condom T, Consoli G, Favier V, Jomelli V, Galarraga R, Ginot P, Maisincho L, Mendoza M, Ménégoz M, Ramirez E, Ribstein E, Suarez W, Villacis M, Wagnon P (2013) Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. Cryosphere 7:81–102CrossRefGoogle Scholar
  74. Radić V, Hock R (2011) Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise. Nat Geosci 4:91–94CrossRefGoogle Scholar
  75. Rahmstorf S, Foster G, Cazenave A (2012) Comparing climate projections to observations up to 2011. Environ Res Lett 7. doi:10.1088/1748-9326/7/4/044035
  76. Rignot E (2008) Changes in West Antarctic ice stream dynamics observed with ALOS PALSAR data. Geophys Res Lett 35:L12505. doi:10.1029/2008GL033365 CrossRefGoogle Scholar
  77. Rignot E, Mouginot J (2012) Ice flow in Greenland for the International Polar Year 2008–2009. Geophys Res Lett 39:L11501CrossRefGoogle Scholar
  78. Rignot E, Vaughan DG, Schmeltz M, Dupont T, MacAyeal D (2002) Acceleration of Pine Island and Thwaites Glaciers, West Antarctica. Ann Glaciol 34:189–194CrossRefGoogle Scholar
  79. Rignot E, Casassa G, Gogineni P, Krabill W, Rivera A, Thomas R (2004) Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophys Res Lett 31:L18401. doi:10.1029/2004GL020697 CrossRefGoogle Scholar
  80. Rignot E, Koppes M, Velicogna I (2010) Rapid submarine melting of the calving faces of West Greenland glaciers. Nat Geosci 3:187–191CrossRefGoogle Scholar
  81. Rignot E, Mouginot J, Scheuchl B (2011a) Ice flow of the Antarctic ice sheet. Science 333:1427–1430CrossRefGoogle Scholar
  82. Rignot E, Velicogna I, van den Broeke MR, Monaghan A, Lenaerts J (2011b) Acceleration of the contribution of Greenland and Antarctic ice sheets to sea level rise. Geophys Res Lett 38:L05503Google Scholar
  83. Rignot E, Jacobs S, Mouginot J, Scheuchl B (2013) Ice shelf melting around Antarctica. Sciencexpress. http://www.sciencemag.org/content/early/recent/. Accessed 13 June 2013
  84. Sasgen I, van de Broeke M, Bamber JL, Rignot E, Sandberg Sørensen L, Wouters B, Martinec Z, Velicogna I, Simonsen SB (2012) Timing and origin of recent regional ice-mass loss in Greenland. Earth Planet Sci Lett 333–334:293–303CrossRefGoogle Scholar
  85. Scambos TA, Frezzotti M, Haran T, Bohlander J, Lenaerts JTM, Van den Broeke MR, Jezek K, Long D, Urbini S, Farness K, Neumann T, Albert M, Winther J-G (2012) Extent of low-accumulation ‘wind glaze’ areas on the East Antarctic plateau: implications for continental ice mass balance. J Glaciol 58:633–647CrossRefGoogle Scholar
  86. Scarchilli C, Frezzotti M, Grigioni P, De Silvestri L, Agnoletto L, Dolci S (2010) Extraordinary blowing snow transport events in East Antarctica. Clim Dyn 34:1195–1206CrossRefGoogle Scholar
  87. Scherler D, Bookhagen B, Strecker MR (2011) Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat Geosci. doi:10.1038/NGEO1068 Google Scholar
  88. Scientific Committee on Antarctic Research—SCAR (2013) Some Antarctic statistics. http://www.scar.org/information/statistics/
  89. Scott JBT, Gudmundsson GH, Smith AM, Bingham RG, Pritchard HD, Vaughan DG (2009) Increased rate of acceleration on Pine Island Glacier strongly coupled to changes in gravitational driving stress. Cryosphere 3:125–131CrossRefGoogle Scholar
  90. Sea Level Research Group University of Colorado (2013) Global Mean Sea Level Time Series (seasonal signals removed). http://sealevel.colorado.edu/
  91. Shepherd A, Ivins ER, Geruo A, Barletta VR, Bentley MJ, Bettadpur S, Briggs KH, Bromwich DH, Forsberg R, Galin N, Horwath M, Jacobs S, Joughin I, King MA, Lenaerts JT, Li J, Ligtenberg SRM, Luckman A, Luthcke SB, McMillan M, Meister R, Milne G, Mouginot J, Muir A, Nicolas JP, Paden J, Payne AJ, Pritchard A, Rignot E, Rott H, Sørensen LS, Scambos TA, Scheuchl B, Schrama EJO, Smith B, Sundal AV, van Angelen JH, van de Berg WJ, van den Broeke MR, Vaughan DG, Velicogna I, Wahr J, Whitehouse PL, Wingham DJ, Yi D, Young D, Zwally HJ (2012) A reconciled estimate of ice-sheet mass balance. Science 338:1183–1189CrossRefGoogle Scholar
  92. Solomina O, Haeberli W, Kull C, Wiles C (2008) Historical and Holocene glacier–climate variations: general concepts and overview. Glob Planet Chang 60:1–9CrossRefGoogle Scholar
  93. Straneo F, Hamilton GS, Sutherland DA, Stearns LA, Davidson F, Hammill MO, Srenson GB, Rosing-Asvid A (2010) Rapid circulation of warm subtropical waters in a major glacial fjord in East Greenland. Nat Geosci 3:182–186CrossRefGoogle Scholar
  94. Thompson LG, Mosley-Thompson E, Davis ME, Zagorodnov VS, Howat IM, Mikhakenko VN, Lin PN (2013) Annually resolved ice core records of tropical climate variability over the past ~1800 years. Science 340:945–950CrossRefGoogle Scholar
  95. Turner J, Colwell SR, Marshall GJ, Lachlan-Cope TA, Carleton AM, Jones PD, Lagun V, Reid PA, Jagovkina S (2005) Antarctic climate change during the last 50 years. Int J Climatol 25:279–294CrossRefGoogle Scholar
  96. Van de Broeke M, Bamber J, Ettema J, Rignot E, Schrama E, Van de Berg WJ, Van Meijgaard E, Velicogna I, Wouters B (2009) Partitioning recent Greenland mass loss. Science 326:984–986CrossRefGoogle Scholar
  97. Van den Broeke MR, Bamber J, Lenaerts J, Rignot E (2011) Ice sheets and sea level: thinking outside the box. Surv Geophys. doi:10.1007/s10712-011-9137-z Google Scholar
  98. World Glacier Monitoring Service (2011) Glacier Mass Balance Bulletin No 11 (2009–2009). http://www.geo.uzh.ch
  99. World Glacier Monitoring System (2008) Global glacier change: facts and figures. http://www.grid.unep.ch/glaciers/pdfs/glaciers.pdfE
  100. Zwally HJ, Giovinetto MB (2011) Overview and assessment of Antarctic ice-sheet mass balance estimates: 1992–2009. Surv Geophys 32:351–376CrossRefGoogle Scholar

Copyright information

© Accademia Nazionale dei Lincei 2013

Authors and Affiliations

  1. 1.ENEARomeItaly
  2. 2.Dipartimento di Scienze dell’AmbienteUniversità di Milano-BicoccaMilanoItaly

Personalised recommendations