Skip to main content
Log in

Open-field experimentation of an innovative and integrated zeolitite cycle: project definition and material characterization

  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

This study is a part of the European LIFE +2010 Project “ZeoLIFE—Water pollution reduction and water saving using a natural zeolitite cycle”. It characterizes the application of Italian zeolite-rich pyroclastic rocks (zeolitites) as soil conditioner. Laboratory experiments will be tested on an experimental field in the Codigoro area, Ferrara district (North-East Italy). The samples investigated are chabazite- and phillipsite-rich and are all collected in quarries from Central Italy: (1) Grosseto area (Sorano and Sovana); (2) Viterbo area (Farnese, Grotte Santo Stefano, Corchiano, Nepi), and (3) Rome area (Riano). All samples are characterized by more than 30 % of zeolite content, together with volcanic glass, feldspars, pyroxenes, and micas. The quantitative mineralogical characterization of soil samples from Codigoro shows variable proportions of quartz, illite, plagioclase, K-feldspar, calcite, dolomite, chlorite, serpentine, kaolinite, gypsum together with an amorphous residual. Collected data confirm that conditioning of soils with selected zeolitite can be extremely promising for a well evident improvement of the soil quality, and contribute to define a standard approach which can surely find a general application well above the boundaries of the selected area for the field test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alves ME, Omotoso O (2009) Improving Rietveld-based clay mineralogic quantification of Oxisols using Siroquant. Soil Sci Soc Am J 73(6):2191–2197

    Article  CAS  Google Scholar 

  • Bianchini G, Laviano R, Lovo S, Vaccaro C (2002) Chemical–mineralogical characterisation of clay sediments around Ferrara (Italy): a tool for an environmental analysis. Appl Clay Sci 21:165–176

    Article  CAS  Google Scholar 

  • Bianchini G, Natali C, Di Giuseppe D, Beccaluva L (2012) Heavy metals in soils and sedimentary deposits of the Padanian Plain (Ferrara, Northern Italy): characterisation and biomonitoring. J Soil Sediment 12:1145–1153

    Article  CAS  Google Scholar 

  • Bish DL, Howard SA (1988) Quantitative phase analysis using the Rietveld method. J Appl Crystallogr 21(2):86–91

    Article  CAS  Google Scholar 

  • Bish DL, Ming DW (2001) Natural zeolites: occurrence, properties, applications. reviews in mineralogy and geochemistry, vol 45. The Mineralogical Society of America, New York

    Google Scholar 

  • Bish DL, Post JB (1993) Quantitative mineralogical analysis using the Rietveld full-pattern fitting method. Am Mineral 78(9–10):932–940

    CAS  Google Scholar 

  • Brigatti MF, Malferrari D, Laurora A, Elmi C (2011) Structure and mineralogy of layer silicates: recent perspectives and new trends. In: Brigatti MF and Mottana A (Eds) Layered mineral structures and their application in advanced technologies. EMU Notes in Mineralogy 11: 1–71

  • Brinatti MA, Mascarenhas YP, Pereira VP, De Moya Partiti CS, Macedo A (2010) Mineralogical characterization of a highly-weathered soil by the Rietveld Method. Scientia Agricola (Piracicaba, Braz.) 67(4):454–464

    Article  CAS  Google Scholar 

  • Carnevali R, Gualtieri A, Passaglia E (1994) Quantitative determination of zeolites component in Italian pyroclastites by the Rietveld analysis of X-ray powder patterns. Mater Eng (Modena, Italy) 5(2):211–221

    CAS  Google Scholar 

  • de’ Gennaro R, Cappelletti P, Cerri G, de’ Gennaro M, Dondi M, Langella A (2004) Zeolitic tuffs as raw materials for lightweight aggregate. Appl Clay Sci 25(2004):71–81

    Article  Google Scholar 

  • Donovan JJ (1995) PROBRE: PC-based data acquisition and processing for electron microprobes. Advanced MicroBeam, Inc., Vienna

    Google Scholar 

  • Eberl DD, Barbarick KA, Lai TM (1995) Influence of NH4-exchanged clinoptilolite on nutrient concentrations in sorghum-sudangrass. In: Ming DW, Mumpton FA (eds) Natural zeolite ‘93. Occurrence, properties, use. International Committee on Natural Zeolites, Brockport, pp 491–504

    Google Scholar 

  • Franzini M, Leoni L, Saitta M (1975) Revisione di una metodologia analitica per fluorescenza—X, basata sulla correzione completa degli effetti di matrice. Rendiconti della Società Italiana di Mineralogia e Petrografia 31(2):365–378

    CAS  Google Scholar 

  • Gualtieri AF, Brignoli G (2004) Rapid and accurate quantitative phase analysis using a fast detector. J Appl Crystallogr 37(1):8–13

    Article  CAS  Google Scholar 

  • Gualtieri AF, Marchi E, Passaglia E (1999) Zeolite content and cation exchange capacity of zeolite-rich rocks. Stud Surf Sci Catal 125:707–713 (Porous Materials in Environmentally Friendly Processes)

    Article  CAS  Google Scholar 

  • Gupta AK, Fyfe WS (1975) Leucite survival: the alteration to analcime. Can Mineral 13:361–363

    Google Scholar 

  • Hill RJ (1991) Expanded use of the Rietveld method in studies of phase abundance in multiphase mixtures. Powder Diffr 6(2):74–77

    Article  CAS  Google Scholar 

  • Hill RJ, Tsambourakis G, Madsen IC (1993) Improved petrological modal analyses from X-ray powder diffraction data by use of the Rietveld method I. Selected igneous, volcanic, and metamorphic rocks. J Petrol 34(5):867–900

    Article  CAS  Google Scholar 

  • Kalló D (2001) Applications of natural zeolites in water and wastewater treatment. In: Bish DL, Ming DW (eds) Natural zeolites: occurrence, properties, applications. Rev Mineral Geochem 45: 519–550

  • Kaufhold S, Ufer K, Kaufhold AW, Stucki JS, Anastàcio A, Reinhold J, Dohrmann R (2010) Quantification of allophane from Ecuador. Clay Clay Miner 58(5):707–716

    Article  CAS  Google Scholar 

  • Larson AC, Von Dreele R (1994) General Structure Analysis System (GSAS). Los Alamos National Laboratory Report LAUR, 86–748

  • Leoni L, Saitta M (1976) X-ray fluorescence analysis of 29 trace elements in rock and mineral standards. Rendiconti della Società Italiana di Mineralogia e Petrografia 32(2):497–519

    CAS  Google Scholar 

  • Lewis MD, Moore FD 3rd, Goldsberry KL (1984) Ammonium-exchanged clinoptilolite and granulated clinoptilolite with urea as nitrogen fertilizers. In: Pond WG, Mumpton FA (eds) Zeo-Agriculture. Use of Natural Zeolites in Agriculture and Aquaculture. Westview Press, Boulder, pp 105–111

    Google Scholar 

  • Louër D (1998) Advances in powder diffraction analysis. Acta Crystallogr A A54(6, Pt. 1):922–933

    Article  Google Scholar 

  • Meggiolaro V (2003) The zeolite deposits of Piandirena Sorano—Central Italy. ZEOGYP-BOARD project (Project n. GRD1-2000-25244): Retrofitting existing plants for low cost production of high performance building boards. Project funded by the European Community under the ‘Competitive and Sustainable Growth’ Programme (1998–2002)

  • Ming DW, Allen ER (2001) Use of natural zeolites in agronomy, horticulture, and environmental soil remediation. In: Bish DL, Ming DW(eds) Natural zeolites: occurrence, properties, applications. Rev Mineral Geochem 45: 619–654

  • Ming DW, Barta DJ, Golden DC, Galindo C Jr, Henninger DL (1995) Zeoponic plant-growth substrates for space applications. In: Ming DW, Mumpton FA (eds) Natural zeolites ’93: occurrence, properties, use. International Committee on Natural Zeolites, Brockport, pp 505–513

    Google Scholar 

  • Passaglia E (2008) Zeoliti naturali, Zeolititi e loro applicazioni. ARVAN srl, Mira

    Google Scholar 

  • Riello P, Canton P, Fagherazzi G (1998) Quantitative phase analysis in semicrystalline materials using the Rietveld method. J Appl Crystallogr 31(1):78–82

    Article  CAS  Google Scholar 

  • Snyder RL, Bish DL (1989) Quantitative analysis. In: Bish DL, Post JE (eds) Modern powder diffraction. Mineralogical Society of America, Rev Mineral 20:101–144

  • Von Dreele RB, Cline JP (1995) The impact of background function on high accuracy Quantitative Rietveld Analysis (QRA): application to NIST SRMs 676 and 656. Adv X-Ray Anal 38:59–68

    Article  Google Scholar 

  • EU.WATER, Transnational integrated management of water resources in agriculture for the EU WATER emergency control. http://www.eu-water.eu/

  • Young RA (1993) The Rietveld method. IUCr Monographs on Crystallography, vol 5. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgments

We acknowledge Verdi S.r.l. for giving us permission to consult the geologic study “The zeolite deposits of Piandirena Sorano Central Italy” (2003) by Dr. Vito Meggiolaro, and are grateful to Dr. Vito Meggiolaro for searching for the original files in his archive and making them available to us. This publication is made in the context of the European LIFE +2010 project “ZeoLIFE—Water pollution reduction and water saving using a natural zeolitite cycle” (project code: LIFE +10 ENV/IT/000321); we are therefore grateful to the EC for funding received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Franca Brigatti.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malferrari, D., Laurora, A., Brigatti, M.F. et al. Open-field experimentation of an innovative and integrated zeolitite cycle: project definition and material characterization. Rend. Fis. Acc. Lincei 24, 141–150 (2013). https://doi.org/10.1007/s12210-013-0235-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-013-0235-3

Keywords

Navigation