Rendiconti Lincei

, Volume 24, Issue 3, pp 197–211 | Cite as

Effects of flows in auto-organization, self-assembly, and emergence of chirality

  • Josep M. Ribó
  • Zoubir El-Hachemi
  • Joaquim Crusats
Chirality in Chemistry and Biophysics


The motion of molecular species in solution, in stagnant, and under simple stirring conditions is dominated by Brownian dynamics. However, when the hydrodynamic forces of laminar flows (imperfect mixing conditions) are such that can align chemical species, these may show a different chemical behaviour to that under conditions of Brownian dynamics (stagnant and uniform mixing conditions). Supra- and macro-molecular species show sizes and shapes that may cause alignment in common laminar flows and thus, within these flows, a different behaviour to that under uniform mixing conditions can be expected. Experimental evidence on this has been reported on the growth of J-aggregates of amphiphilic porphyrins, where diastereoselective and enantioselective effects by consequence of laminar flows have been detected. Furthermore, the hydrodynamic torque originated by a vortex stirring may select the chiral sign in the spontaneous mirror symmetry breaking that occurs during the auto-organization processes of these systems. In consequence, mechanical torques must be considered to form part of the specific group of chiral fields capable of determining the chiral sign outcome in bifurcation scenarios of spontaneous mirror symmetry breaking, as those that we can imagine that may have taken place in the route from chemical evolution to biological evolution.


Absolute asymmetric synthesis Chirality Mechano-chemistry Self-assembly Supramolecular chemistry 


  1. Aquilanti V, Maciel GS (2006) Observed molecular alignment in gaseous streams and possible chiral effects in vortices and in surface scattering. Orig Life Evol Biosph 36:435–441CrossRefGoogle Scholar
  2. Aquilanti V, Pirani F, Cappelletti D, Vecchiocattivi F, Kasai T (2004) Molecular reaction stereodynamics: in search of paths to overcome steric hindrances to reactivity. In: Lagana A, Lendway G (eds) Theory of chemical reaction dynamics. Kluwer Academic Publishers, Netherlands, pp 243–251Google Scholar
  3. Aquilanti V, Grossi G, Lombardi A, Maciel GS, Palazzeti (2011) Aligned molecular collisions and steredynamical mechanism for selective chirality. Rendiconti Lincei 22:125–135CrossRefGoogle Scholar
  4. Arteaga O, Canillas A, Purrello R, Ribo JM (2009a) Evidence of induced chirality in stirred solutions of supramolecular nanofibers. Opt Lett 34:2177–2179CrossRefGoogle Scholar
  5. Arteaga O, Escudero C, Oncins G, El-Hachemi Z, Llorens J, Canillas A, Crusats J, Ribo JM (2009b) Reversible mechanical induction of optical activity in solutions of soft-matter nanophases. Chem Asian J 4:1687–1696CrossRefGoogle Scholar
  6. Arteaga O, Canillas A, Crusats J, El-Hachemi Z, Llorens J, Sacristan E, Ribo JM (2010) Emergence of supramolecular chirality by flows. Chem Phys Chem 11:3511–3516CrossRefGoogle Scholar
  7. Arteaga O, Canillas A, Crusats J, El-Hachemi A, Llorens J, Sorrenti A, Ribó JM (2011) Flow effects in supramolecular chirality. Isr J Chem 51:1007–1016CrossRefGoogle Scholar
  8. Avalos A, Babiano R, Cintas P, Jiménez JL, Palacios JC, Barron LD (1998) Absolute asymmetric synthesis under physical fields: facts and fictions. Chem Rev 98:2391–2404CrossRefGoogle Scholar
  9. Avetisov V, Goldanskii V (1996) Mirror symmetry breaking at the molecular level. Proc Natl Acad Sci USA 93:11435–11442CrossRefGoogle Scholar
  10. Balaban TS (2005) Tailoring porphyrins and chlorins for self-assembly in biomimetic artificial antenna systems. Acc Chem Res 62:612–623CrossRefGoogle Scholar
  11. Blanco C, Ribo JM, Crusats J, El-Hachemi Z, Moyano A, Hochberg D (2013) Mirror symmetry breaking with limited enantioselective autocatalysis and temperature gradients: a stability survey. Phys Chem Chem Phys 15:1546–1556Google Scholar
  12. Brush SG (2003) The kinetic theory of gases. World Scientific Publications, SingaporeGoogle Scholar
  13. Castriciano MA, Romeo A, Villari V, Micali N, Monsù Scolaro L (2003) Structural rearrangements in 5, 10, 15, 20-tetra kis(4-sulfonatophenyl)porphyrin J-aggregates under strongly acidic conditions. J Phys Chem 107:8765–8771Google Scholar
  14. Chen P, Ma X, Hu K, Rong Y, Liu M (2011) Left or right? The direction of compression-generated vortex-like flow selects the macroscopic chirality of interfacial molecular assemblies. Chem Eur J 17:12108–12114CrossRefGoogle Scholar
  15. Cintas P, Viedma C (2011) Homochirality beyond grinding: deracemizing chiral crystals by temperature gradient under boiling. Chem Commun 47:12786–12788CrossRefGoogle Scholar
  16. Crusats J, Hochberg D, Moyano A, Ribo JM (2009) Frank model and spontaneous emergence of chirality in closed systems. Chem Phys Chem 10:2123–2131CrossRefGoogle Scholar
  17. Curie P (1894) (1894) Sur la symétrie dans les phénomènes physiques, symétrie d’un champ électrique et d’un champ magnétique. J de Physique 3:393–415Google Scholar
  18. D’Urso A, Randazzo R, Lo Faro L, Purrello R (2010) Vortexes and nanoscale chirality. Angew Chem Int Ed 49:108–112CrossRefGoogle Scholar
  19. D’Urso A, Fragala ME, Purrello R (2012) From self-assembly to non-covalent synthesis of programmable porphyrins’ arrays in aqueous solution. Chem Commun 48:8156–8176Google Scholar
  20. De Greef TFA, Smulders MMJ, Wolffs M, Schenning APHJ, Sijbesma RP, Meijer EW (2009) Supramolecular polymerization. Chem Rev 109:5687–5754CrossRefGoogle Scholar
  21. Deltete RJ (2007a) Wilhelm Ostwald’s energetics 1: origins and motivations. Foundations Chem 9:3–56CrossRefGoogle Scholar
  22. Deltete RJ (2007b) Wilhelm Ostwald’s energetics 1: origins and motivations. Foundations Chem 9:265–316CrossRefGoogle Scholar
  23. Dzwolak W (2010) Vortex-induced chiral bifurcation in aggregating insulin. Chirality 22:E154–E160CrossRefGoogle Scholar
  24. Dzwolak W, Loksztejn A, Galinska-Rakoczy A, Adachi R, Goto Y, Rupnicki L (2007) Conformational Indeterminism in protein misfolding: chiral amplification on amyloidogenic pathway of insulin. J Am Chem Soc 129:7517–7522CrossRefGoogle Scholar
  25. Earman J (2004) (2004) Curie’s principle and spontaneous symmetry breaking. J Intert Stud Philos Sci 18:173–198CrossRefGoogle Scholar
  26. El-Hachemi Z, Arteaga O, Canillas A, Crusats J, Escudero C, Kuroda R, Harada T, Rosa M, Ribó JM (2008) On the mechano-chiral effect of vortical flows on the dichroic spectra of 5-phenyl-10,15,20-tris(4-sulfonatophenyl) porphyrin J-aggregates. Chem Eur J 14:6438–6443CrossRefGoogle Scholar
  27. El-Hachemi Z, Crusats J, Ribo JM, McBride JM, Veintemillas-Verdaguer S (2011a) Metastability in supersaturated solution and transition towards chirality in the crystallization of NaClO3. Angew Chem Int Ed 50:2359–2363Google Scholar
  28. El-Hachemi Z, Arteaga O, Canillas A, Crusats J, Llorens J, Ribo JM (2011b) Chirality generated by flows in pseudocyanine dye J-aggregates: revisiting 40 years old reports. Chirality 23:585–592CrossRefGoogle Scholar
  29. El-Hachemi Z, Escudero C, Acosta-Reyes F, Casas MT, Altoe V, Aloni S, Oncins G, Sorrenti A, Crusats J, Campos JL, Ribó JM (2013) Structure of diprotonated meso-tetrakis-(4-sulfonatophenyl)-porphyrin J-aggregates: a sheet-like architecture explains chirality, optics and shapes of a family of J-aggregates. J Mater Chem C. doi:10.1039/C3TC30299G
  30. Escudero C, Crusats J, Diez-Perez I, El-Hachemi Z, Ribo JM (2006) Folding and hydrodynamic forces in J-aggregates of 5-phenyl-10, 15, 20-tris-(4-sulfophenyl)porphyrin. Angew Chem Int Ed 45:8032–8035CrossRefGoogle Scholar
  31. Escudero C, D’Urso A, Lauceri R, Bonaccorso C, Sciottob D, Di Bellab S, El-Hachemi Z, Crusats J, Ribó JM, Purrello R (2010) Hierarchical dependence of porphyrin self-aggregation: controlling and exploiting the complexity. J Porphyrins Phthalocyanines 14:708–712CrossRefGoogle Scholar
  32. Frank FC (1953) Spontaneous formation of optically active substances. Biochim Biophys Acta 13:171–174Google Scholar
  33. Haller W (1932) Orientierung und Deformierung disperser Teilchen in strömenden Flüssigkeiten. Kolloid-Zeitschrift 61:26–41CrossRefGoogle Scholar
  34. Havinga E (1954) Spontaneous formation of optically active substances. Biochim Biophys Acta 13:171–174CrossRefGoogle Scholar
  35. Honda C, Hada H (1976) Circular dichroism of poly molecular associate, J-aggregate, of 1, 10–2, 20-cyanine chloride by regular stirring solution. Tetrahedron Lett 21:177–180CrossRefGoogle Scholar
  36. Howard DW, Lightfoot EN, Hirschefelder JO (1976) The hydrodynamic resolution of optical isomers. AIChE J 22:794–798CrossRefGoogle Scholar
  37. Hu PP, Peng L, Zhen SJ, Chen LQ, Xiao SJ, Huang CZ (2010) Homochiral expression of proteins: a discussion on the natural chirality related to the origin of life. Sci China Chem 53:792–796CrossRefGoogle Scholar
  38. Jacques J, Collet A, Wilen SH (1981) Enantiomers, racemates and resolutions. Wiley, New York, pp 43–88Google Scholar
  39. Kawasaki T, Matsumura Y, Tsutsumi T, Suzuki K, Ito M, Soai K (2009) Asymmetric autocatalysis triggered by carbon isotope (13c/12c) chirality. Science 324:492–495CrossRefGoogle Scholar
  40. Kendl A (2012) Asymmetric alignment in magnetized plasma turbulence. Phys Plasmas 19:112301Google Scholar
  41. Kirstein S, Dähne S (2006) J-Aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials. Int J Photoenergy 5:3–24Google Scholar
  42. Kirstein S, Von Berlepsch H, Böttcher C, Burger C, Ouart A, Reck G, Dähne S (2000) Chiral J-aggregates formed by achiral cyanine dyes. Chem Phys Chem 1:146–150Google Scholar
  43. Kitagawa Y, Segawa H, Ishii K (2011) Magneto-chiral dichroism of organic compounds. Angew Chem Int Ed 50:9133–9136CrossRefGoogle Scholar
  44. Kobayashi T (1996) J-aggregates. World Scientific, SingaporeCrossRefGoogle Scholar
  45. Kondepudi DK, Asakura K (2001) Chiral autocatalysis, spontaneous symmetry breaking, and stochastic behavior. Acc Chem Res 34:946–954CrossRefGoogle Scholar
  46. Kondepudi DK, Nelson GW (1984) Chiral-symmetry-breaking states and their sensitivity in non-equilibrium chemical systems. Phys A 125:465–496CrossRefGoogle Scholar
  47. Kondepudi DK, Kaufman RJ, Singh N (1990) Chiral symmetry breaking in sodium chlorate crystallization. Science 250:975–976CrossRefGoogle Scholar
  48. Langmuir I, Hall RN (1989) Pathological science. Phys Today 42:36–48CrossRefGoogle Scholar
  49. Loksztejn A, Dzwolak W (2010) Vortex-induced formation of insulin amyloid superstructures probed by time-lapse atomic force microscopy and circular dichroism spectroscopy. J Mol Biol 395:643–655CrossRefGoogle Scholar
  50. Micali N, Engelkamp H, van Rhee PG, Christianen PCM, Monsu Scolaro L, Maan JC (2012) Selection of supramolecular chirality by application of rotational and magnetic forces. Nature Chem 4:201–207CrossRefGoogle Scholar
  51. Mislow K (2003) Absolute asymmetric synthesis: a commentary. Collect Czech Chem Commun 68:849–864CrossRefGoogle Scholar
  52. Noorduin WL, Izumi T, Millemaggi A, Leeman M, Meekes H, van Enckevort WJP, Kellog RM, Kaptein B, Vlieg E, Blackmond DG (2008) Emergence of a single solid chiral state from a nearly racemic amino acids derivative. J Am Chem Soc 130:1158–1159CrossRefGoogle Scholar
  53. Norden B (1977) Linear and circular dichroism of polymeric pseudocyanine. J Phys Chem 81:157–159Google Scholar
  54. Ohno O, Kaizu Y, Kobayashi H (1993) J-aggregate formation of a water-soluble porphyrin in acidic aqueous media. J Chem Phys 99:4128–4140CrossRefGoogle Scholar
  55. Okano K, Arteaga O, Ribo JM, Yamashita T (2011) Emergence of chiral environment by flows: the case of an ionic oligomer and Congo Red dye. Chem Eur J 17:9288–9292CrossRefGoogle Scholar
  56. Palyi G, Zucchi C, Caglioti L Eds. (2012) The Soai reaction and related topic. Edizioni Artestampa—Accademia Nazionale di Scienze Lettere e Arti ModenaGoogle Scholar
  57. Petit-Garrido N, Ignes-Mullol J, Claret J, Sagues F (2009) Chiral selection by interfacial shearing of self-assembled achiral molecules. Phys Rev Lett 103:237802CrossRefGoogle Scholar
  58. Petit-Garrido N, ClaretJ Ignes-Mullol J, Sagues F (2012) Stirring competes with chemical induction in chiral selection of soft matter aggregates. Nature Commun 3:100–1001. doi:10.1038 CrossRefGoogle Scholar
  59. Plasson R, Bersini H, Commeyras A (2004) Recycling; Spontaneous emergence of homochirality in non-catalytic systems. Proc Natl Acad Sci USA 30:16733–16738CrossRefGoogle Scholar
  60. Plasson R, Kondepudi DK, Bersini H, Commeyras A, Asakura K (2007) Emergence of homochirality in far-from-equilibrium systems: mechanisms and role in prebiotic chemistry. Chirality 19:589–600CrossRefGoogle Scholar
  61. Plasson R, Brandenburg A, Jullien L, Bersini H (2011) Autocatalyses. J Phys Chem A 115:8073–8085CrossRefGoogle Scholar
  62. Ranganath GS, Ramaseshan S (1969a) Piezo-rotatory coefficients and crystal symmetry. J. Opt. Soc. Am. 59:1229–1232CrossRefGoogle Scholar
  63. Ranganath GS, Ramaseshan S (1969b) Piezo-rotatory coefficients and stress-induced optical activity. Proc Indian Acad Sci A 70:275–291Google Scholar
  64. Raudino A, Pannuzzo M (2012) Hydrodynamic-induced enantiomeric enrichment of self-assemblies: role of the solid-liquid interface in chiral nucleation and seeding. J Chem Phys 137:134902CrossRefGoogle Scholar
  65. Ribo JM, Crusats J, Sagues F, Claret J, Rubires R (2001) Chiral sign induction by vortices during the formation of mesophases in stirred solutions. Science 292:2063–2066CrossRefGoogle Scholar
  66. Ribó JM, Crusats J, El-Hachemi Z, Moyano A, Blanco C, Hochberg D (2013) Spontaneous mirror symmetry breaking in the limited enantioselective autocatalysis model: abyssal hydrothermal vents as scenario for the emergence of chirality in prebiotic chemistry. Astrobiology 13:132–142CrossRefGoogle Scholar
  67. Rivera Islas J, Lavabre D, Grevy J-M, Hernandez Lamoneda R, Rojas Cabrera H, Micheau J-C, Buhse T (2005) Mirror-symmetry breaking in the Soai reaction: a kinetic understanding. Proc Natl Acad Sci USA 39:13743–13748CrossRefGoogle Scholar
  68. Roelfes G, Feringa BL (2005) DNA-based asymmetric catalysis. Angew Chem Int Ed 44:3230–3232CrossRefGoogle Scholar
  69. Saeva FD, Olin GR (1977) On the extrinsic circular dichroism of J-aggregate species of achiral dyes. J Am Chem Soc 99:4848–4850CrossRefGoogle Scholar
  70. Schellman J, Jensen HP (1987) Optical spectroscopy of oriented molecules. Chem Rev 87:1359–1399CrossRefGoogle Scholar
  71. Soai K, Kawasaki T (2008) Asymmetric autocatalysis with amplification of chirality. Top Curr Chem 284:1–33CrossRefGoogle Scholar
  72. Soai K, Shibata T, Morioka H, Choji K (1995) Asymmetric autocatalysis and amplification of enantiomeric excess of a chiral molecule. Nature 378:767–768CrossRefGoogle Scholar
  73. Sorrenti A, El-Hachemi Z, Crusats J, Ribo JM (2011) Effects of flow-selectivity on self-assembly and auto-organization processes: an example. Chem Commun 47:8551–8553CrossRefGoogle Scholar
  74. Sorrenti A, El-Hachemi Z, Arteaga O, Canillas A, Crusats J, Ribo JM (2012) Kinetic control of the supramolecular chirality of porphyrin J-aggregates. Chem Eur J 18:8820–8826CrossRefGoogle Scholar
  75. Sparks WB, Hough J, Germer TA, Chen F, DasSarma S, DasSarma P, Robb FT, Manset N, Kolokolova L, Reid N, Macchetto FD, Martin W (2009) Detection of circular polarization in light scattered from photosynthetic microbes. Proc Natl Acad Sci USA 106:7816–7821CrossRefGoogle Scholar
  76. Takechi H, Canillas A, Ribo JM, Watarai H (2013) Mueller matrix analysis of circular dichroism spectra of superimposed porphyrin J-aggregates formed at liquid–liquid interface in a rotating cell. Langmuir, submittedGoogle Scholar
  77. Tsuda A, Alam MA, Harada T, Yamaguchi T, Ishii N, Aida T (2007) Spectroscopic visualization of vortex flows using dye-containing nanofibers. Angew Chem Int Ed 46:8198–8202CrossRefGoogle Scholar
  78. Viedma C (2005) Chiral symmetry breaking during crystallization: complete chiral purity induced by nonlinear autocatalysis and recycling. Phys Rev Lett 94(4):065504CrossRefGoogle Scholar
  79. Wada S, Fujiwara K, Monjushiro H, Watarai H (2007) Optical chirality of protonated tetraphenylporphyrin J-aggregate formed at the liquid–liquid interface in a centrifugal liquid membrane cell. J Phys Condens Mat 19:375105CrossRefGoogle Scholar
  80. Wolffs M, George J, Tomovi Z, Meskers SCJ, Schenning APHJ, Meijer EW (2007) Macroscopic origin of circular dichroism effects by alignment of self-assembled fibers in solution. Angew Chem Int Ed 46:8203–8205CrossRefGoogle Scholar
  81. Würthner F, Kaiser TE, Saha-Möller CR (2011) Supramolecular dye aggregates: nanotube knockout. Angew Chem Int Ed 50:3376–3410CrossRefGoogle Scholar
  82. Yamaguchi T, Kimura T, Matsuda H, Aida T (2004) Macroscopic spinning chirality memorized in spin-coated films of spatially designed dendritic zinc porphyrin J-aggregates. Angew Chem Int Ed 116:3542–3546Google Scholar

Copyright information

© Accademia Nazionale dei Lincei 2013

Authors and Affiliations

  • Josep M. Ribó
    • 1
  • Zoubir El-Hachemi
    • 1
  • Joaquim Crusats
    • 1
  1. 1.Department of Organic Chemistry, Institute of Cosmos Science (IEEC-UB)University of BarcelonaBarcelonaSpain

Personalised recommendations