Skip to main content
Log in

The aperiodic nature of incommensurately modulated structures

  • X-Ray Diffraction
  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

The discovery of aperiodic crystals is perhaps one of the most important event which has changed our vision on crystalline architectures since the discovery of diffraction 100 years ago. It was the merit of a Dutch crystallographer, P.M. de Wolff, to interpret their diffraction pattern as a three dimensional projection of a higher dimensional reciprocal lattice, idea which led directly to the generalization of the concept of crystal. Aperiodic crystals are currently described as periodic objects in higher-dimensional space, i.e. the superspace and their structures can be described in terms of 3-d cuts. Incommensurate structures, composite structures and quasicrystals all belong to aperiodic structures. Many interesting properties of superspace have been discovered which are also directly applicable to crystals in the conventional sense, i.e. crystals with 3-d periodicity. In particular the concept of structure type can be extended for a better understanding of structure relations. The notion of solid solution has also benefited from superspace considerations. Moreover, superspace is a very powerful tool for a better understanding of structure–property relations in material science, e.g. luminescence properties could be directly associated to the description of structures in superspace. Recently, this concept has been used for the prediction of new structural modifications including polytypes and even polytypic modifications of a well-known pharmaceutical product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arakcheeva A, Chapuis G (2006) Getting more out of an incommensurately modulated structure: the example of K5Yb(MoO4)4. Acta Crystallographica Sect B 62(1):52–59. doi:10.1107/S0108768105034671

    Google Scholar 

  • Arakcheeva A, Pattison P, Chapuis G, Rossell M, Filaretov A, Morozov V, Van Tendeloo G (2008) Ksm(moo4)2, an incommensurately modulated and partially disordered scheelite-like structure. Acta Crystallographica Sect B 64(2):160–171. doi:10.1107/S0108768108001870

    Google Scholar 

  • Arakcheeva A, Logvinovich D, Chapuis G, Morozov V, Eliseeva SV, Buenzli JCG, Pattison P (2012) The luminescence of Na x Eu(2 − x)/3MoO4 scheelites depends on the number of eu-clusters occurring in their incommensurately modulated structure. Chem Sci 3(2):384–390. doi:10.1039/c1sc00289a

    Article  CAS  Google Scholar 

  • Chao S, Taylor W (1940) The lamellar structure of potash-soda felspars. Proc R Soc Lond Ser A Math Phys Sci 174(A956):0057–0072. doi:10.1098/rspa.1940.0005

    Article  CAS  Google Scholar 

  • Daniel V, Lipson H (1943) An X-ray study of the dissociation of an alloy of copper, iron nickel. Proc R Soc Lond Ser A Math Phys Sci 181(A987):0368–0378

    Article  CAS  Google Scholar 

  • de Wolff PMD, van Aalst W (1972) 4-dimensional space group of γ-Na2CO3. Acta Crystallographica Sect A 28(S):S111

    Google Scholar 

  • Dehlinger U (1927) On the broadening of Debye lines in cold treated metals. Zeitschrift für Kristallographie 65(5/6):615–631

    CAS  Google Scholar 

  • Elcoro L, Pérez O, Perez-Mato JM, Petříček V (2012) Unified (3 + 1)-dimensional superspace description of the 2212-type stair-like [Bi2Sr3Fe2O9]m [Bi4Sr6Fe2O16] family of compounds. Acta Crystallographica Sect B 68(4):341–355. doi:10.1107/S0108768112018095.

    Google Scholar 

  • Hargreaves ME (1951) Modulated structures in some copper–nickel–iron alloys. Acta Crystallographica 4(4):301–309

    Article  CAS  Google Scholar 

  • Janner A (1972) Symmetry groups of lattice-vibrations. Acta Crystallographica Sect A 28(S):S111

    Google Scholar 

  • Janssen T, Chapuis G, de Boissieu M (2007) Aperiodic crystals: from modulated phases to quasicrystals. In: International Union of Crystallography monographs on crystallography, OUP Oxford. http://books.google.ch/books?id=sHnJ2wBdcjYC

  • Kochendörfer A (1939) Line expansions in cosine shaped lattice interferences. Zeitschrift für Kristallographie 101(1/2):149–155

    Google Scholar 

  • Korekawa M (1967) Theorie der satellitenreflexe. Habilitationsschrift. Ludwigs-Maximilians-Universität zu München, München

  • Levine D, Steinhardt PJ (1984) Quasicrystals: a new class of ordered structures. Phys Rev Lett 53:2477–2480. doi:10.1103/PhysRevLett.53.2477

    Google Scholar 

  • Makovicky E, Hyde B (1981) Non-commensurate (misfit) layer structures. In: Inorganic chemistry, structure and bonding, vol 46. Springer, Berlin, pp 101–170

  • Morozov VA, Arakcheeva AV, Konovalova VV, Pattison P, Chapuis G, Lebedev OI, Fomichev VV, Van Tendeloo G (2010) LiZnNb4O(11.5): a novel oxygen deficient compound in the Nb-rich part of the Li2O–ZnO–Nb2O5 system. J Solid State Chem 183(2):408–418. doi:10.1016/j.jssc.2009.12.008. http://www.elsevier.com/locate/jssc

    Google Scholar 

  • Orlov I, Palatinus L, Arakcheeva A, Chapuis G (2007) Hexagonal ferrites: a unified model of the (TS) n T series in superspace. Acta Crystallographica Sect B 63(5):703–712. doi:10.1107/S0108768107038104

    Google Scholar 

  • Preston G (1938) The diffraction of X-rays by age-hardening aluminium copper alloys. Proc R Soc Lond Ser A Math Phys Sci 167(A931):0526–0538

    Google Scholar 

  • Shechtman D, Blech I, Gratias D, Cahn JW (1984) Metallic phase with long-range orientational order and no translational symmetry. Phys Rev Lett 53:1951–1953

    Article  CAS  Google Scholar 

  • Stokes HT, Campbell BJ, van Smaalen S (2011) Generation of (3 + d)-dimensional superspace groups for describing the symmetry of modulated crystalline structures. Acta Crystallographica Sect A 67(1):45–55. doi:10.1107/S0108767310042297

  • van Aalst W, den Holander J, Peterse WJAM, de Wolff PM (1976) The modulated structure of γ-Na2CO3 in a harmonic approximation. Acta Crystallographica Sect B 32(1):47–58. doi:10.1107/S056774087600229X

    Google Scholar 

  • van Smaalen S (2007) Incommensurate crystallography. In: International Union of Crystallography monographs on crystallography. OUP Oxford, Oxford. http://books.google.ch/books?id=JOn7OYV7U4UC

  • Yamamoto A (1996) Crystallography of Quasiperiodic Crystals. Acta Crystallographica Sect A 52(4):509–560. doi:10.1107/S0108767396000967

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gervais Chapuis.

Additional information

This contribution is the written, peer-reviewed version of a paper presented at the conference The Centennial of X-Ray Diffraction (1912–2012), held at Accademia Nazionale dei Lincei in Rome on May 8 and 9, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chapuis, G., Arakcheeva, A. The aperiodic nature of incommensurately modulated structures. Rend. Fis. Acc. Lincei 24 (Suppl 1), 77–84 (2013). https://doi.org/10.1007/s12210-012-0221-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-012-0221-1

Keywords

Navigation