Skip to main content
Log in

Science for the cultural heritage: the contribution of X-ray diffraction

  • SI: XR DIFFRACTION
  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

Diffraction-based techniques are fundamental tools for the characterization and understanding of materials of different nature, including those relevant for the cultural heritage. Both conservation science and archaeometry thus may extensively profit from the information provided by diffraction techniques. The aims of the investigations include the issues of diagnostics and conservation of art works, and analysis and interpretation of archaeological artifacts related to human past. The various methods and techniques of single-crystal and powder diffraction as applied to cultural heritage materials are briefly described with reference to specific examples, with focus on the extracted information in terms of (1) phase identification and quantification of crystalline compounds and complex polyphasic mixtures, (2) the texture and orientation of the crystalline phases, (3) the atomic and molecular structure of the phases involved, and (4) the physical microstructural state of the material in terms of crystallite size and accumulated strain. A few trends are evidenced in the present day development of diffraction instrumentation and techniques applied to cultural heritage materials, including the use of portable instrumentation, the access to large scale facilities, and the combined use of diffraction and imaging techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adriaens A, Dowsett M (2008) Time resolved spectroelectrochemistry studies for protection of heritage metals. Surf Eng 24:84–89. doi:10.1179/174329408X281759

    Article  CAS  Google Scholar 

  • Adriaens A, Dowsett M (2010) The coordinated use of synchrotron spectroelectrochemistry for corrosion studies on heritage metals. Acc Chem Res 43:927–935. doi:10.1021/ar900269f

    Article  CAS  Google Scholar 

  • Artioli G (2007) Crystallographic texture analysis of archaeological metals: interpretation of manufacturing techniques. Appl Phys A 89:899–908

    Article  CAS  Google Scholar 

  • Artioli G (2010) Scientific methods and the cultural heritage. Oxford University Press, Oxford, pp 1–552

    Book  Google Scholar 

  • Artioli G, Angelini I (2011) Mineralogy and archaeology: fatal attraction. Eur J Min 23:849–855. doi:10.1127/0935-1221/2011/0023-2119

    Article  CAS  Google Scholar 

  • Artioli G, Dugnani M, Hansen T, Lutterotti L, Pedrotti A, Sperl G (2003) Crystallographic texture analysis of the Iceman and coeval copper axes by non-invasive neutron powder diffraction. In: Fleckinger A (ed) La mummia dell’età del rame. 2. Nuove ricerche sull’uomo venuto dal ghiaccio. Collana del Museo Archeologico dell’Alto Adige, vol. 3, Folio Verlag, Bolzano, pp 9–22

  • Artioli G, Cerulli T, Cruciani G, Dalconi MC, Ferrari G, Parisatto M, Rack A, Tucoulou R (2010) X-ray diffraction microtomography (XRD-CT), a novel tool for non-invasive mapping of phase development in cement materials. Anal Bioanal Chem 397:2131–2136. doi:10.1007/s00216-010-3649-0

    Article  CAS  Google Scholar 

  • Bertrand L, Cotte M, Stampanoni M, Thoury M, Marone F, Schoeder S (2012) Developments and trends in synchrotron studies of ancient and historical materials. Phys Rep, doi: 10.1016/j.physrep.2012.03.003

  • Bish DL, Post JE (eds) (1989) Modern powder diffraction. Reviews in mineralogy, vol 20. Mineralogical Society of America, Chantilly

  • Bouchenaki M (2004) Defining the intangible cultural heritage. Museum Int 56:1–197

    Google Scholar 

  • Casali F (2006) X-ray and neutron digital radiography and computed tomography for cultural heritage. In: Bradley D, Creagh D (eds) Physical techniques in the study of art, archaeology and cultural heritage, vol 1, chap 2, Elsevier, Amsterdam, pp 41–123. doi: 10.1016/S1871-1731(06)80003-5

  • Cotte M, Welcomme E, Solé VA, Salomé M, Menu M, Walther Ph, Susini J (2007) Synchrotron based X-ray spectromicroscopy used for the study of an atypical micrometric pigment in 16th century paintings. Anal Chem 79:6988–6994. doi:10.1021/ac0708386

    Article  CAS  Google Scholar 

  • Cotte M, Susini J, Dik J, Janssens K (2010) Synchrotron-based X-ray absorption spectroscopy for art conservation: looking back and looking forward. Acc Chem Res 43:705–714. doi:10.1021/ar900199m

    Article  CAS  Google Scholar 

  • Creagh D (2007) Synchrotron radiation and its use in art, archaeometry, and cultural heritage studies. In: Bradley D, Creagh D (eds) Physical techniques in the study of art, archaeology and cultural heritage, vol 2. Elsevier, Amsterdam

    Google Scholar 

  • De Nolf W, Janssens K (2010) Micro X-ray diffraction and fluorescence tomography for the study of multilayered automotive paints. Surf Interf Anal 42:411–418. doi:10.1002/sia.3125

    Article  Google Scholar 

  • Duran A, Jimenez De Haro MC, Perez-Rodriguez JL, Franquelo ML, Herrera LK, Justo A (2010) Determination of pigments and binders in Pompeian wall paintings using synchrotron radiation—high-resolution X-ray powder diffraction and conventional spectroscopy—chromatography. Archaeometry 52:286–307. doi:10.1111/j.1475-4754.2009.00478.x

    Article  CAS  Google Scholar 

  • Ferraris G, Makovicky E, Merlino S (2004) Crystallography of modular materials. In: IUCr monographs on crystallography, vol 15. Oxford Science Publications, Oxford, pp 259–262

  • Gettens RJ (1962) Maya blue: an unresolved problem in ancient pigments. Am Antiquity 27:557–564

    Article  CAS  Google Scholar 

  • Giacovazzo C (ed) (2011) Fundamentals of crystallography. IUCr texts on crystallography, vol 15, 3rd edn. Oxford Science Publications, Oxford, pp 1–864

  • Herrera LK, Cotte M, Jimenez de Haro MC, Duran A, Justo A, Perez-Rodriguez JL (2008) Characterization of iron oxide-based pigments by synchrotron-based micro X-ray diffraction. Appl Clay Sc 42:57–62. doi:10.1016/j.clay.2008.01.021

    Article  CAS  Google Scholar 

  • Kockelmann W, Kirfel A (2006) Neutron diffraction imaging of cultural heritage objects. Arch Műhely 2006(2):1–15

    Google Scholar 

  • Kockelmann W, Siano S, Bartoli L, Visser D, Hallebeek P, Traum R, Linke R, Schreiner M, Kirfel A (2006) Applications of TOF neutron diffraction in archaeometry. Appl Phys A: Mater Sci Process 83:175–182. doi:10.1007/s00339-006-3503-6

    Article  CAS  Google Scholar 

  • Kocks UF, Tomé CN, Wenk HR (eds) (1998) Texture and anisotropy. Preferred orientation in polycrystals and their effect on materials properties. Cambridge University Press, Cambridge

    Google Scholar 

  • Lehmann EH, Vontobel P, Deschler-Erb E, Soares M (2005) Non-invasive studies of objects from cultural heritage. Nucl Instrum Meth Phys Res Sect A: Accel Spectrom Detect Assoc Equip 542:68–75. doi:10.1016/j.nima.2005.01.013

    Article  CAS  Google Scholar 

  • Leyssens K, Adriaens A, Dowsett MG, Schotte B, Oloff I, Pantos E, Bell AMT, Thompson SP (2005) Simultaneous in situ time resolved SR-XRD and corrosion potential analyses to monitor the corrosion on copper. Electroch Comm 7:1265–1270. doi:10.1016/j.elecom.2005.09.006

    Article  CAS  Google Scholar 

  • Madsen IC, Scarlett NVY (2008) Quantitative phase analysis. In: Dinnebier RE, Billinge SJL (eds) Powder diffraction: theory and practice. RCS Publishing, Cambridge, pp 298–331

    Chapter  Google Scholar 

  • Martinetto P, Dooryhee E, Anne M, Talabot J, Tsoucaris G, Walter P (1999) Cosmetic recipes and make-up manufacturing in ancient Egypt. ESRF Newsletter, April 1999, pp 10–11

  • Martinetto P, Anne M, Dooryhée E, Tsoucaris G, Walther Ph (2000) A synchrotron X-ray diffraction study of Egyptian cosmetics. In: Creagh DC, Bradley DA (eds) radiation in art and archaeometry. Elsevier Science, Amsterdam, pp 297–316

    Chapter  Google Scholar 

  • Martinetto P, Anne M, Dooryhee E, Drakopoulos M, Dubus M, Saloman J, Simionovici A, Walter P (2001) Synchrotron X-ray micro-beam studies of ancient Egyptian make-up. Nucl Instrum Meth Phys Res Section B: Beam Interact Mater Atoms 181:744–748

    Article  CAS  Google Scholar 

  • May E, Jones M (eds) (2006) Conservation science. RSC Publishing, Cambridge, pp 1–376

    Book  Google Scholar 

  • Monaco HL, Artioli G (2011) Experimental methods in X-ray and neutron crystallography, chap 5. In: Giacovazzo C (ed.) Fundamentals of crystallography. IUCr texts on crystallography, vol. 15, 3rd edn. Oxford Science Publications, Oxford, pp 301–416

  • Pedrotti A (2009) Il riparo Gaban (Trento) e la neolitizzazione della Valle dell’Adige. In: Kruta V, Kruta Poppi L, Lička M, Magni E (eds) Antenate di Venere 27,000–4,000 a.C. Skira, Geneve-Milano, pp 39–47

  • Popa NC (2008) Microstructural properties: Texture and macrostress effects. In: Dinnebier RE, Billinge SJL (eds) Powder diffraction: Theory and practice. RCS Publishing, Cambridge, pp 335–372

    Google Scholar 

  • Reyes-Valerio C (1993) De Bonampak al Templo Mayor. El azul maya en Mesoamérica. Coleccion América Nuestra. v. 40. Siglo XXI Editores, Mexico, pp 1–157

  • Rius J, Elkaim E, Torrelles X (2004) Structure determination of the blue mineral pigment aerinite from synchrotron powder diffraction data—The solution of an old riddle. Eur J Min 16:127–134. doi:10.1127/0935-1221/2004/0016-0127

    Article  CAS  Google Scholar 

  • Rius J, Crespi A, Rig A, Melgarejo JC (2009) Crystal-structure refinement of Fe3+-rich aerinite from synchrotron powder diffraction and Mössbauer data. Eur J Min 21:233–240. doi:10.1127/0935-1221/2009/0021-1895

    Article  CAS  Google Scholar 

  • Salvadó N, Butí S, Pantos E, Bahrami F, Labrador A, Pradell T (2008) The use of combined synchrotron radiation micro FT-IR and XRD for the characterization of Romanesque wall paintings. Appl Phys A: Mater Sci Process 90:67–73. doi:10.1007/s00339-007-4233-0

    Google Scholar 

  • Sanchez del Rio M, Domenech A, Domenech-Carbo MT, Vazquez de Agredos Pascual ML, Suarez M, Garcia-Romero E (2011) The Maya blue pigment. Developments in clay science, vol 3, chap 18, pp 453–481. doi: 10.1016/B978-0-444-53607-5.00018-9

  • Scott DA (1991) Metallography and microstructure of ancient and historic metals. The Getty Conservation Institute, Los Angeles

    Google Scholar 

  • Snyder RL, Fiala J, Bunge HJ (eds) (2000) Defect and microstructure analysis by diffraction. Oxford University Press, Oxford

    Google Scholar 

  • Tite MS (2001) Overview—materials study in archaeology. In: Brothwell DR, Pollard AM (eds) Handbook of Archaeological Sciences. John Wiley & Sons, Chichester, pp 443–448

    Google Scholar 

  • Tsoucaris G, Martinetto P, Walter P, Leveque JL (2001) Chemistry of cosmetics in antiquity. Ann Pharm Fr 59:415–422

    CAS  Google Scholar 

  • Ungár T, Martinetto P, Ribárik G, Dooryhée E, Walter Ph, Anne M (2002) Revealing the powdering methods of black makeup in Ancient Egypt by fitting microstructure based Fourier coefficients to the whole x-ray diffraction profiles of galena. J Appl Phys 91:2455–2465

    Article  Google Scholar 

  • Valentini L, Dalconi MC, Parisatto M, Cruciani G, Artioli G (2011) Towards three-dimensional quantitative reconstruction of cement microstructure by X-ray diffraction microtomography. J Appl Cryst 44:272–280. doi:10.1107/S0021889810054701

    Article  CAS  Google Scholar 

  • Walter P, Martinetto P, Tsoucaris G, Breniaux R, Lefebvre MA, Richard G, Talabot J, Dooryhee E (1999) Making make-up in Ancient Egypt. Nature 397:483–484

    Article  CAS  Google Scholar 

  • Welcomme E, Walter P, Bleuet P, Hodeau J-L, Dooryhee E, Martinetto P, Menu M (2007) Classification of lead white pigments using synchrotron radiation micro X-ray diffraction. Appl Phys A: Mater Sci Process 89:825–832. doi:10.1007/s00339-007-4217-0

    Article  CAS  Google Scholar 

  • Yen AS, Bish DL, Blake DF, Vaniman DT, Treiman AH, Ming DW, Morris RV, Farmer JD, Downs RT, Chipera SJ, Des Marais DJ, Chen CW (2012) Definitive mineralogy from the Mars Science Laboratory CheMin instrument. In: 43rd Lunar and Planetary Science Conference. Abstract 2761

Download references

Acknowledgments

Working at the interface between the “two cultures” is exceedingly stimulating and rewarding, though at times it can be rather frustrating. I wish to thank all the researchers in my group collaborating on archaeometric problems for their continuous help and interaction, and for their unbeatable enthusiasm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilberto Artioli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Artioli, G. Science for the cultural heritage: the contribution of X-ray diffraction. Rend. Fis. Acc. Lincei 24 (Suppl 1), 55–62 (2013). https://doi.org/10.1007/s12210-012-0207-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-012-0207-z

Keywords

Navigation