Skip to main content
Log in

The role of high-pressure in the reactivity of simple molecules: implications in prebiotic chemistry

  • Astrochemistry
  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

Simple molecules are abundant in several space environments and the knowledge of their physical properties and chemical reactivity is central in many disciplines. Pressure plays a key role in this scenario causing intriguing and unexpected aggregation forms and chemical transformations also for the simplest molecules like water, nitrogen and carbon dioxide. Particularly interesting is the simultaneous effect of pressure and absorption of radiation, a common scenario in spatial environments, because of the electronic changes produced in the molecular systems which result able to trigger chemical processes by exploiting the high-density conditions. Here we will provide some examples of the high-pressure reactivity of few simple model molecules and of their mixtures. These molecules have been selected on the basis of their abundance and relevance in a prebiotic chemical framework. In most of the examples, attention is posed on the comparison between purely pressure-induced and laser-assisted high-pressure reactions in order to account and discriminate the effects of the two variables on the reactivity. The technical approaches employed to reproduce in laboratory, the pressure and temperature conditions of interest for simulating the conditions encountered in different spatial environments will also be briefly reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahrens TJ (1987) Shock waves techniques for geophysics and planetary physics. In: Sammis CG, Henvey TL (eds) Methods of experimental physics, vol. 24, part A, pp 185–235

  • Akahama Y, Kawamura H, Häusermann D, Hanfland M, Shimomura O (1995) New high-pressure structural transition of oxygen at 96 GPa associated with metallization in a molecular solid. Phys Rev Lett 74:4690–4694

    Article  CAS  Google Scholar 

  • Bar-Nun A, Dimitrov V (2006) Methane on Mars: a product of H2O photolysis in the presence of CO. Icarus 181:320–322

    Article  CAS  Google Scholar 

  • Bini R (2004) Laser-assisted high-pressure chemical reactions. Acc Chem Res 37:95–101

    Article  CAS  Google Scholar 

  • Brandes JA, Boctor NZ, Cody GD, Cooper BA, Hazen RM, Yoder HS Jr (1998) Abiotic nitrogen reduction on the early Earth. Nature 395:365–367

    Article  CAS  Google Scholar 

  • Brandes JA, Hazen RM, Yoder HS Jr (2008) Inorganic nitrogen reduction and stability under simulated hydrothermal conditions. Astrobiology 8:1113–1126

    Article  CAS  Google Scholar 

  • Cavazzoni C, Chiarotti GL, Scandolo S, Tosatti E, Bernasconi M, Parrinello M (1999) Superionic and metallic states of water and ammonia at giant planet conditions. Science 283:44–46

    Article  CAS  Google Scholar 

  • Ceppatelli M, Bini R, Schettino V (2009a) High-pressure photodissociation of water as a tool for hydrogen synthesis and fundamental chemistry. Proc Natl Acad Sci 106:11454–11459

    Article  CAS  Google Scholar 

  • Ceppatelli M, Bini R, Schettino V (2009b) High-pressure reactivity of model hydrocarbons driven by near-UV photodissociation of water. J Phys Chem B 113:14640–14647

    Article  CAS  Google Scholar 

  • Ceppatelli M, Serdjukov A, Bini R, Jodl HJ (2009c) Pressure induced reactivity of solid CO by FTIR studies. J Phys Chem 113:6652–6660

    Article  CAS  Google Scholar 

  • Chyba C, Sagan C (1992) Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature 355:125–132

    Article  CAS  Google Scholar 

  • Citroni M, Ceppatelli M, Bini R, Schettino V (2002) Laser-induced selectivity for dimerization versus polymerization of butadiene under pressure. Science 295:2058–2060

    Article  CAS  Google Scholar 

  • Citroni M, Ceppatelli M, Bini R, Schettino V (2007) Dimerization and polymerization of isoprene at high pressures. J Phys Chem B 111:3910–3917

    Article  CAS  Google Scholar 

  • Citroni M, Bini R, Foggi P, Schettino V (2008) The role of excited electronic states in the high-pressure amorphization of benzene. Proc Natl Acad Sci 105:7658–7663

    Article  CAS  Google Scholar 

  • Citroni M, Bini R, Pagliai M, Cardini G, Schettino V (2010) Nitromethane decomposition under high static pressure. J Phys Chem B 114:9420–9428

    Article  CAS  Google Scholar 

  • Cleaves HJ, Chalmers JH, Lazcano A, Miller SL, Bada JL (2008) A reassessment of prebiotic organic synthesis in neutral atmospheres. Orig Life Evol Biosph 38:105–115

    Article  CAS  Google Scholar 

  • Cody GD, Boctor NZ, Filley TR, Hazen RM, Scott JH, Sharma A, Yoder HS Jr (2000) Primordial carbonylated iron-sulfur compounds and the synthesis of pyruvate. Science 289:1337–1340

    Article  CAS  Google Scholar 

  • Cody GD, Boctor NZ, Brandes JA, Filley TR, Hazen RM, Yoder HS Jr (2004) Primordial carbonylated iron-sulfur compounds and the synthesis of pyruvate. Geochim Cosmochim Acta 68:2185–2196

    Article  CAS  Google Scholar 

  • Elsila J, Allamandola LJ, Sandford SA (1997) The 2,140 cm−1 (4.673 microns) solid CO band: The case for interstellar O2 and N2 and the photochemistry of nonpolar interstellar ice analogs. Astrophys J 479:818–838

    Article  CAS  Google Scholar 

  • Eremets MI (1996) High pressure experimental methods. Oxford University Press, New York

    Google Scholar 

  • Eremets MI, Gavriliuk AG, Trojan IA, Dzivenko DA, Boehler R (2004) Single-bonded cubic form of nitrogen. Nat Mater 3:558–563

    Article  CAS  Google Scholar 

  • Graham RA (1993) Solids under high-pressure shock compression: mechanics, physics and chemistry. Springer, New York

    Book  Google Scholar 

  • Hemley RJ (2000) Effects of high-pressure on molecules. Annu Rev Phys Chem 51:763–800

    Article  CAS  Google Scholar 

  • Hollis JM, Jewell PR, Lovas FJ, Remijan1 A (2004) Green bank telescope observations of interstellar glycolaldehyde: low-temperature sugar. Astrophys J 613:L45–L48

    Google Scholar 

  • Holzapfel WB, Isaacs NS (1997) High-pressure techniques in chemsitry and physics. A practical approach. Oxford University Press, New York

    Google Scholar 

  • Iota V, Yoo CS, Cynn H (1999) Quartzlike carbon dioxide: an optically nonlinear extended solid at high pressures and temperatures. Science 283:1510–1513

    Article  CAS  Google Scholar 

  • Jamieson JC, Lawson AW, Nachtrieb ND (1959) New device for obtaining X-ray diffraction patterns from substances exposed to high pressure. Rev Sci Instrum 30:1016–1019

    Article  CAS  Google Scholar 

  • Johnson AP, Cleaves HJ, Dworkin JP, Glavin DP, Lazcano A, Bada JL (2008) The Miller volcanic spark discharge experiment. Science 322:404

    Article  CAS  Google Scholar 

  • Kasting JF (1990) Bolide impacts and the oxidation state of carbon in the Earth’s early atmosphere. Orig Life Evol Biosph 20:199–231

    Article  CAS  Google Scholar 

  • Kasting JF (2008) The primitive earth. In: Wong JTF, Lazcano A (eds) Prebiotic evolution and astrobiology. Landes Biosciences, Austin

    Google Scholar 

  • Kirk RL, Stevenson DJ (1987) Hydromagnetic implications of zonal flows in the giant planets. Astrophys J 316:836–846

    Article  Google Scholar 

  • Kramers JD (2003) Volatile element abundance patterns and an early liquid water ocean on Earth. Precamb Res 126:379–394

    Article  CAS  Google Scholar 

  • Lundegaard LF, Weck G, McMahon MI, Desgreniers S, Loubeyre (2006) Observation of an O8 molecular lattice in the epsilon phase of solid oxygen. Nature 443: 201–204

  • Miller SL (1953) Production of amino acids under possible primitive earth conditions. Science 117:528–529

    Article  CAS  Google Scholar 

  • Miller SL, Urey HC (1959) Organic compound synthesis on the primitive Earth: several questions about the origin of life have been answered, but much remains to be studied. Science 130:245–251

    Article  CAS  Google Scholar 

  • Nellis WJ, Hamilton DC, Holmes NC, Radousky HB, Ree FH, Mitchell AC, Nicol M (1988) The nature of the interior of Uranus based on studies of planetary ices at high dynamic pressure. Science 240:779–781

    Article  CAS  Google Scholar 

  • Nellis WJ, Holmes NC, Mitchell AC, Hamilton DC, Nicol M (1997) Equation of state and electrical conductivity of “synthetic Uranus”, a mixture of water, ammonia, and isopropanol, at shock pressure up to 200 GPa (2 Mbar). J Chem Phys 107:9096–9100

    Article  CAS  Google Scholar 

  • Ness NF, Acuña MH, Behannon KW, Burlaga LF, Connerney JEP, Lepping RP, Neubauer FM (1986) Magnetic fields at Uranus. Science 233:85–89

    Article  CAS  Google Scholar 

  • Ness NF, Acuña MH, Burlaga LF, Connerney JEP, Lepping RP, Neubauer FM (1989) Magnetic fields at Neptune. Science 246:1473–1478

    Article  CAS  Google Scholar 

  • Nisini B (2000) Water’s role in making stars. Science 290:1513–1514

    Article  CAS  Google Scholar 

  • Pizzarello S (2007) The chemistry that preceded life’s origin: a study guide from meteorites. Chem Biodivers 4:680–693

    Article  CAS  Google Scholar 

  • Ruoff AL, Xia H, Xia Q (1992) The effect of a tapered aperture on X-ray diffraction from a sample with a pressure gradient: studies on three samples with a maximum pressure of 560 GPa. Rev Sci Instrum 63: 4342–4348

    Google Scholar 

  • Saladino R, Crestini C, Ciciriello F, Costanzo G, Di Mauro E (2007) Formamide chemistry and the origin of informational polymers. Chem Biodivers 4:694–720

    Article  CAS  Google Scholar 

  • Santoro M, Gorelli FA, Bini R, Ruocco G, Scandolo S, Crichton WA (2006) Amorphous silica-like carbon dioxide. Nature 441:857–860

    Article  CAS  Google Scholar 

  • Schettino V, Bini R, Ceppatelli M, Ciabini L, Citroni M (2005) Chemical reactions at very high pressure. Adv Chem Phys 131:105–242

    Article  CAS  Google Scholar 

  • Sokolov U, Stein G (1966) Photolysis of liquid water at 1,849 Å. J Chem Phys 44:3329–3337

    Article  CAS  Google Scholar 

  • Wang CC, Davis LI Jr (1974) Two-photon dissociation of water: a new OH source for spectroscopic studies. J Chem Phys 62:53–55

    Article  Google Scholar 

  • Weir CE, Lippincott ER, Van Valkenburg A, Bunting EN (1959) Infrared studies in the 1- to 15-micron region to 30,000 atmospheres. J Res Natl Bur Stand 63A:55–62

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Bini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bini, R. The role of high-pressure in the reactivity of simple molecules: implications in prebiotic chemistry. Rend. Fis. Acc. Lincei 22, 385–393 (2011). https://doi.org/10.1007/s12210-011-0138-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-011-0138-0

Keywords

Navigation