Skip to main content
Log in

Rotational spectroscopy for astrophysical investigations

  • Astrochemistry
  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

This account is an attempt of providing a brief, but exhaustive overview on the possible applications of rotational spectroscopy in the field of astrophysics and astrochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agúndez M, Cernicharo J, Guélin M, Kahane C, Roueff E, Kłos J, Aoiz FJ, Lique F, Marcelino N, Goicoechea JR, González García M, Gottlieb CA, McCarthy MC, Thaddeus P (2010) Astronomical identification of CN, the smallest observed molecular anion. Astron Astrophys 517(L2):1–5

    Google Scholar 

  • Anderson TG, Gudeman CS, Dixon TA, Woods RC (1980) Pressure broadening of the HCO+ J=0–1 transition by hydrogen. J Chem Phys 72:1332–1336

    Article  CAS  Google Scholar 

  • Blanksby SJ, McAnoy AM, Dua S, Bowie JH (2001) Cumulenic and heterocumulenic anions: potential interstellar species?. Mon Not R Astron Soc 328:89–100

    Article  CAS  Google Scholar 

  • Buffa G, Dore L, Meuwly M (2009) State-to-state rotational transition rates of the HCO+ ion by collisions with helium. Mon Not R Astron Soc 397:1909–1914

    Article  CAS  Google Scholar 

  • Buffa G, Tarrini O, Dore L, Meuwly M (2010) Experimental and theoretical study of the broadening and shifting of N2H+ rotational lines by Helium. ChemPhysChem 11:3141–3145

    Article  CAS  Google Scholar 

  • Carvajal M, Kleiner I, Demaison J (2010) Global assignment and extension of millimeter- and submillimeter-wave spectral database of 13C1-methyl formate (H13COOCH3) in the ground and first excited states. Astrophys J Suppl 190:315–321

    Article  CAS  Google Scholar 

  • Cazzoli G, Dore L (1990a) Lineshape measurements of rotational lines in the millimeter-wave region by second harmonic detection. J Mol Spectrosc 141:49–58

    Article  CAS  Google Scholar 

  • Cazzoli G, Dore L (1990b) Observation of crossing resonances in the hyperfine structure of the \(J = 1 \leftarrow 0\) transition of DC15N. J Mol Spectrosc 143:231–236

    Article  CAS  Google Scholar 

  • Cazzoli G, Puzzarini C (2005) Observation of OD by microwave spectroscopy. J Chem Phys 123(041101):1–4

    Google Scholar 

  • Cazzoli G, Puzzarini C (2006a) The Lamb-dip spectrum of methylcyanide: precise rotational transition frequencies and improved ground-state rotational parameters. J Mol Spectrosc 240:153–163

    Article  CAS  Google Scholar 

  • Cazzoli G, Puzzarini C (2006b) Observation of OD using microwave spectroscopy: a new candidate for astrophysical detection?. Astrophys J 648:L79–L81

    Article  CAS  Google Scholar 

  • Cazzoli G, Dore L, Cludi L, Puzzarini C, Beninati S (2002a) Hyperfine structure of \( J = 1 \leftarrow 0\) Transition of 13CO. J Mol Spectrosc 215:160–162

    Article  CAS  Google Scholar 

  • Cazzoli G, Dore L, Puzzarini C, Beninati S (2002b) Millimeter- and submillimeter-wave spectrum of C17O. Rotational hyperfine structure analyzed using the Lamb-dip technique. Phys Chem Chem Phys 4:3575–3577

    Article  CAS  Google Scholar 

  • Cazzoli G, Puzzarini C, Lapinov AV (2003) Precise laboratory frequencies for the J = 1–0 and J = 2–1 rotational transitions of C18O. Astrophys J 592:L95–L98

    Article  CAS  Google Scholar 

  • Cazzoli G, Puzzarini C, Lapinov AV (2004) Precise laboratory frequencies for the \(J \leftarrow J -- 1 (J = 1, 2, 3, 4)\) rotational transitions of 13CO. Astrophys J 611:615–620

    Article  CAS  Google Scholar 

  • Cazzoli G, Puzzarini C, Buffa G, Tarrini O (2008) Pressure-broadening in the THz frequency region: the 1.113 THz line of water. J Quant Spectrosc Radiat Transf 109:1563–1574

    Article  CAS  Google Scholar 

  • Cazzoli G, Puzzarini C, Stopkowicz S, Gauss J (2010) Hyperfine structure in the rotational spectra of trans-formic acid: Lamb-dip measurements and quantum-chemical calculations. Astron Astrophys A 520(64):1–6

    Article  Google Scholar 

  • Colmont J-M, Bakri B, Rohart F, Wlodarczak G, Demaison J, Cazzoli G, Dore L, Puzzarini C (2005) Intercomparison between ozone-broadening parameters retrieved from millimetre-wave measurements by using different techniques. J Mol Spectrosc 231:171–187

    Article  CAS  Google Scholar 

  • Costain CC (1969) The use of saturation dip absorption in microwave spectroscopy and in microwave frequency stabilization. Canad J Phys 47:2431–2433

    Article  CAS  Google Scholar 

  • Dalgarno A, McCray RA (1973) The formation of interstellar molecules from negative ions. Astrophys J 181:95–100

    Article  CAS  Google Scholar 

  • Green S (1975) Rotational excitation of molecular ions in interstellar clouds. Astrophys J 201:366–372

    Article  CAS  Google Scholar 

  • Herbst E (1981) Can negative molecular ions be detected in dense interstellar clouds? Nature 289:656–657

    Article  CAS  Google Scholar 

  • Herbst E (2001) Chem Soc Rev 30:168. See also, for example, http://en.wikipedia.org/wiki/List_of_molecules_in_interstellar_space

  • Herbst E, Klemperer W (1974) Is X-ogen HCO+? Astrophys J 188:255–256

    Article  CAS  Google Scholar 

  • Lattanzi V, Walters A, Drouin BJ, Pearson JC (2007) Rotational spectrum of the formyl cation, HCO+, to 1.2 THz. Astrophys J 662:771–778

    Article  CAS  Google Scholar 

  • Lattanzi V, Walters A, Drouin BJ, Pearson JC (2008) Submillimeter spectrum of formic acid. Astrophys J Suppl 176:536–542

    Article  CAS  Google Scholar 

  • McCarthy MC, Gottlieb CA, Gupta H, Thaddeus P (2006) Laboratory and astronomical identification of the negative molecular ion C6H. Astrophys J 652:L141–L144

    Article  CAS  Google Scholar 

  • Millar TJ, Herbst E, Bettens RPA (2000) Large molecules in the envelope surrounding IRC+10216. Mon Not R Astron Soc 316:195–203

    Article  CAS  Google Scholar 

  • Müller HSP, Schlöder F, Stutzki J, Winnewisser G (2005) The Cologne Database for molecular spectroscopy, CDMS: a useful tool for astronomers and spectroscopists. J Mol Struct 742:215–227

    Article  Google Scholar 

  • Pickett HM, Poynter RL, Cohen EA, Delitsky ML, Pearson JC, Müller HSP (1998) Submillmeter, millimeter, and microwave spectral line catalog. J Quant Spectrosc Radiat Transf 60:883–890

    Article  CAS  Google Scholar 

  • Turner BE (1974) U93.174—a new interstellar line with quadrupole hyperfine splitting. Astrophys J 193:L83–L87

    Article  CAS  Google Scholar 

  • Winnewisser G, Herbst E, Ungerechts H (1992) Spectroscopy among the stars. In: Rao KN, Weber A (eds) Spectroscopy of the earth’s atmosphere and interstellar medium. Academic Press, San Diego, pp 423–538

  • Woods RC (1983) Spectroscopy of molecular ions in the microwave region. In: Miller TA, Bondybey VE (eds) Molecular ions: spectroscopy, structure, and chemistry. Amsterdam, pp 11–47

Download references

Acknowledgments

The author acknowledges fruitful collaboration as well as discussions with Prof. G. Cazzoli.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Puzzarini.

Additional information

Paper presented at the Symposium “Astrochemistry: molecules in space and time” (Rome, 4–5 November 2010), sponsored by Fondazione “Guido Donegani”, Accademia Nazionale dei Lincei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puzzarini, C. Rotational spectroscopy for astrophysical investigations. Rend. Fis. Acc. Lincei 22, 165–172 (2011). https://doi.org/10.1007/s12210-011-0120-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-011-0120-x

Keywords

Navigation