Skip to main content

Advertisement

Log in

Tetanus, botulinum and snake presynaptic neurotoxins

  • Published:
RENDICONTI LINCEI Aims and scope Submit manuscript

Abstract

Tetanus and botulinum neurotoxins, produced by anaerobic bacteria of the genus Clostridium, are the most toxic proteins known and are solely responsible for the pathogenesis of tetanus and botulism. They are metallo-proteases that enter nerve terminals and cleave proteins of the neuroexocytosis apparatus causing a persistent, but reversible, inhibition of neurotransmitter release. Botulinum neurotoxins are used in the therapy of many human syndromes caused by hyperactive nerve terminals. Snake presynaptic PLA2 neurotoxins block nerve terminals by binding to the nerve membrane and catalyzing phospholipid hydrolysis with production of lysophospholipids and fatty acids. These compounds change the membrane conformation causing enhanced fusion of synaptic vesicle via hemifusion intermediate with release of neurotransmitter and, at the same time, inhibition of vesicle fission and recycling. It is possible to envisage clinical applications of the lysophospholipid/fatty acid mixture to inhibit hyperactive superficial nerve terminals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACh:

acetylcholine

BoNT:

botulinum neurotoxin

FA:

fatty acid

LPL:

lysophospholipid

NMJ:

neuromuscular junction

SNAP-25:

25-kDa synaptosomal-associated protein

SNARE:

soluble N-ethylmaleimide-sensitive factor attachment protein receptor

VAMP:

vesicle-associated membrane protein

SPAN:

snake presynaptic PLA2 neurotoxin

SV:

synaptic vesicles

TeNT:

tetanus neurotoxin

References

  1. Abe T, Limbrick AR, Miledi R (1976) Acute muscle denervation induced by betabungarotoxin. Proc R Soc Lond B Biol Sci. 194: 545–553

    CAS  Google Scholar 

  2. Aoki KR (2001) A comparison of the safety margins of botulinum neurotoxin serotypes A, B, and F in mice. Toxicon 39: 1815–1820

    Article  CAS  Google Scholar 

  3. Bleck TP (1989) Clinical aspects of tetanus. In: Simpson LL (ed.), Botulinum neurotoxins and tetanus toxin. San Diego: Academic Press: 379–398

    Google Scholar 

  4. Bonanomi D, Pennuto M, Rigoni M, Rossetto O, Montecucco C, Valtorta F (2005) Taipoxin induces synaptic vesicle exocytosis and disrupts the interaction of synaptophysin I with VAMP2. Mol. Pharmacol. 67: 1901–1908

    Article  CAS  Google Scholar 

  5. Chen IL, Lee CY (1970) Ultrastructural changes in the motor nerve terminals caused by beta-bungarotoxin. Virchows Arch. B. Cell Pathol. 6: 318–325

    CAS  Google Scholar 

  6. Chernomordik LV, Leikina E, Frolov V, Bronk P, Zimmerberg J (1997) An early stage of membrane fusion mediated by the low pH conformation of influenza hemagglutinin depends upon membrane lipids. J. Cell. Biol. 136: 81–93

    Article  CAS  Google Scholar 

  7. Chernomordik LV, Kozlov MM (2003) Protein-lipid interplay in fusion and fission of biological membranes. Annu. Rev. Biochem. 72: 175

    Article  CAS  Google Scholar 

  8. Connolly S, Trevett AJ, Nwokolo NC, Lalloo DG, Naraqi S, Mantle D, Schofield IS, Fawcett PR, Harris JB, Warrell DA (1995) Neuromuscular effects of Papuan Taipan snake venom. Ann. Neurol. 38: 916–920

    Article  CAS  Google Scholar 

  9. Criado M, Gil A, Viniegra S, Gutierrez LM (1999) A single amino acid near the C terminus of the synaptosome-associated protein of 25 kDa (SNAP-25) is essential for exocytosis in chromaffin cells. Proc. Natl. Acad. Sci. USA 96: 7256–7261

    Article  CAS  Google Scholar 

  10. Cull-Candy SG, Fohlman J, Gustavsson D, Lullmann-Rauch R, Thesleff S (1976) The effects of taipoxin and notexin on the function and fine structure of themurine neuromuscular junction. Neuroscience 1: 175–180

    Article  CAS  Google Scholar 

  11. Dixon RW, Harris JB (1999) Nerve terminal damage by beta-bungarotoxin: its clinical significance. Am J Pathol. 154: 447–455

    CAS  Google Scholar 

  12. Dodds DC, Omeis IA, Cushman SJ, Helms JA, Perin MS (1997) Neuronal pentraxin receptor, a novel putative integral membrane pentraxin that interacts with neuronal pentraxin 1 and 2 and taipoxin-associated calcium-binding protein 49. J. Biol. Chem. 272: 21488–21494

    Article  CAS  Google Scholar 

  13. Dong M, Richards DA, Goodnough MC, Tepp WH, Johnson EA, Chapman ER (2003) Synaptotagmins I and II mediate entry of botulinum neurotoxin B into cells. J. Cell. Biol. 162: 1293–1303

    Article  CAS  Google Scholar 

  14. Dong M, Yeh F, Tepp WH, Dean C, Johnson EA, Janz R, Chapman ER (2006) SV2 Is the Protein Receptor for Botulinum Neurotoxin A. Science 312: 592–596

    Article  CAS  Google Scholar 

  15. Duchen LW (1971) An electron microscopic study of the changes induced by botulinum toxin in the motor end-plates of slow and fast skeletal muscle fibres of the mouse. J Neurol Sci. 14: 47–60

    Article  CAS  Google Scholar 

  16. Fischer A, Montal M (2007a) Single molecule detection of intermediates during botulinum neurotoxin translocation across membranes. Proc.Natl.Acad. Sci.USA 104: 10447–10452

    Article  CAS  Google Scholar 

  17. Fischer A, Montal M (2007b) Crucial role of the disulfide bridge between botulinum neurotoxin light and heavy chains in protease translocation across membranes. J Biol Chem. In press

  18. Foran PG, Mohammed N, Lisk GO, Nagwaney S, Lawrence GW, Johnson E, Smith L, Aoki KR, Dolly JO (2003) Evaluation of the therapeutic usefulness of botulinum neurotoxin B, C1, E, and F compared with the long lasting type A. Basis for distinct durations of inhibition of exocytosis in central neurons. J. Biol. Chem. 278: 1363–1371

    Article  CAS  Google Scholar 

  19. Fuller N, Rand RP (2001) The influence of lysolipids on the spontaneous curvature and bending elasticity of phospholipid membranes. Biophys J. 81: 243–254

    CAS  Google Scholar 

  20. Galazka A, Gasse F (1995) The present status of tetanus and tetanus vaccination. Curr. Top. Microbiol. Immunol. 195: 31–53

    CAS  Google Scholar 

  21. Gill DM (1982) Bacterial toxins: a table of lethal amounts. Microbiol. Rev. 46: 86–94

    CAS  Google Scholar 

  22. Hamilton JA (2003) Fast flip-flop of cholesterol and fatty acids in membranes: implications for membrane transport proteins. Curr. Opin. Lipidol. 14: 263–271

    Article  CAS  Google Scholar 

  23. Harris JB (1997) Toxic phospholipases in snake venom: an introductory review. Symp. zool. Soc. Lond. 70: 235–250

    Google Scholar 

  24. Harris JB, Grubb BD, Maltin CA, Dixon R. (2000) The neurotoxicity of the venom phospholipases A(2), notexin and taipoxin. Exp. Neurol. 161: 517–526

    Article  CAS  Google Scholar 

  25. Howard BD, Gundersen CB (1980) Effects and mechanisms of polypeptide neurotoxins that act presynaptically. Annu. Rev. Pharmacol. Toxicol. 20: 307–336

    Article  CAS  Google Scholar 

  26. Howard BD, Wu WC (1976) Evidence that beta-bungarotoxin acts at the exterior of nerve terminals. Brain Res. 103: 190–192

    Article  CAS  Google Scholar 

  27. Huang X, Wheeler MB, Kang YH, Sheu L, Luckacs GL, Trimble WS, Gaisano HY (1998) Truncated SNAP-25 (1–197), like botulinum neurotoxin A, can inhibit insulin secretion from HIT-T15 insulinoma cells. Mol. Endocrinol. 121060–121070

  28. Hughes R, Whaler BC(1962) Influence of nerve-endings activity and of drugs on the rate of paralysis of rat diaphragm preparations by Clostridium botulinum type A toxin. J. Physiol. (Lond) 160: 221–233

    CAS  Google Scholar 

  29. Jahn R, Lang T, Sudhof TC (2003) Membrane fusion. Cell 112: 519–533

    Article  CAS  Google Scholar 

  30. Kamenskaya MA, Thesleff S (1974) The neuromuscular blocking action of an isolated toxin from the elapid (Oxyuranus scutellactus). Acta Physiol. Scand. 90: 716–724

    Article  CAS  Google Scholar 

  31. Kelly RB, Brown BR (1974) Biochemical and physiological properties of a purified snake venom neurotoxin which acts presynaptically. J. Neurobiol. 5: 135–150

    Article  CAS  Google Scholar 

  32. Kelly RB, Oberg SG, Strong PN, Wagner GM (1976) beta-Bungarotoxin, a phospholipase that stimulates transmitter release. Cold Spring Harb. Symp. Quant. Biol. 40: 117–125

    CAS  Google Scholar 

  33. Kielian M, Rey FA (2006) Virus membrane-fusion proteins: more than one way to make a hairpin. Nat. Rev.Microbiol. 4: 67–76

    Article  CAS  Google Scholar 

  34. Kini RM (1997) Venom PhospholipaseA2 Enzymes. JohnWiley & Sons, Chichester

    Google Scholar 

  35. Kirkpatrick LL, Matzuk MM, Dodds DC, Perin MS (2000) Biochemical interactions of the neuronal pentraxins. Neuronal pentraxin (NP) receptor binds to taipoxin and taipoxin-associatedcalcium-binding protein 49 viaNP1 andNP2. J. Biol. Chem. 275: 17786–17792

    Article  CAS  Google Scholar 

  36. Koriazova LK, Montal M (2003) Translocation of botulinum neurotoxin light chain protease through the heavy chain channel. Nat. Struct. Biol. 10: 13–18

    Article  CAS  Google Scholar 

  37. Kularatne SA (2002) Common krait (Bungarus caeruleus) bite in Anuradhapura, Sri Lanka: a prospective clinical study, 1996–98. Postgrad. Med. J. 78: 276–280

    Article  CAS  Google Scholar 

  38. Kwong PD, Mcdonald NQ, Sigler PB, Hendrickson WA (1995) Structure of beta 2-bungarotoxin: potassium channel binding by Kunitz modules and targeted phospholipase action. Structure 3: 1109–1119

    Article  CAS  Google Scholar 

  39. Lacy DB, Tepp W, Cohen AC, Dasgupta BR, Stevens RC (1998) Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nature Struct. Biol. 5: 898–902

    Article  CAS  Google Scholar 

  40. Lalli G, Bohnert S, Deinhardt K, Verastegui C, Schiavo G (2003) The journey of tetanus and botulinum neurotoxins in neurons. Trends Microbiol. 11: 431–437

    Article  CAS  Google Scholar 

  41. Mahrhold S, Rummel A, Bigalke H, Davletov B, Binz T (2006) The synaptic vesicle protein 2C mediates the uptake of botulinum neurotoxin A into phrenic nerves. FEBS Lett. 580:2011–2014

    Article  CAS  Google Scholar 

  42. McArthur M, Atshaves B, Frolov A, Foxworth W, Kier A, Schroeder F (1999) Cellular uptake and intracellular trafficking of long chain fatty acids. J. Lipid Res.: 1371–1383

  43. Major RH (1945) Classic descriptions of disease. Springfield, IL: Charles C. Thomas

    Google Scholar 

  44. Montecucco C (1986) How do tetanus and botulinum toxins bind to neuronal membranes? Trends Biochem. Sci. 11: 315–317

    Article  Google Scholar 

  45. Montecucco C, Molgo J (2005) Botulinal neurotoxins: revival of an old killer. Curr Opin Pharmacol. 5: 274–279

    Article  CAS  Google Scholar 

  46. Montecucco C, Rossetto O (2000) How do presynaptic PLA2 neurotoxins block nerve terminals? Trends Biochem. Sci. 25: 266–270

    Article  CAS  Google Scholar 

  47. Montecucco C, Rossetto O, Schiavo G (2004) Presynaptic receptor arrays for clostridial neurotoxins. Trends Microbiol. 195: 221–241

    Google Scholar 

  48. Montecucco C, Schiavo G, Gao Z, Bauerlein E, Boquet P, Dasgupta BR (1988) Interaction of botulinum and tetanus toxins with the lipid bilayer surface. Biochem. J. 251: 379–383

    CAS  Google Scholar 

  49. Montecucco C, Schiavo G Dasgupta BR(1989) Effect of pH on the interaction of botulinum neurotoxins A, B and E with liposomes. Biochem. J. 259: 47–53

    CAS  Google Scholar 

  50. Montecucco C, Schiavo G, Pantano S (2005) SNARE complexes and neuroexocytosis: how many, how close? Trends Biochem. Sci. 30: 367–372

    Article  CAS  Google Scholar 

  51. Neale EA, Bowers LM, Jia M, Bateman KE, Williamson LC, 1999. Botulinum neurotoxin A blocks synaptic vesicle exocytosis but not endocytosis at the nerve terminal. J Cell Biol. 147: 1249–1260

    Article  CAS  Google Scholar 

  52. Neco P, Rossetto O, Gil A, Montecucco C, Gutierrez LM (2003) Taipoxin induces Factin fragmentation and enhances release of catecholamines in bovine chromaffin cells. J. Neurochem. 85: 329–337

    Article  CAS  Google Scholar 

  53. Ng RH, Howard BD (1978) Degenergization of nerve terminals by beta-bungarotoxin. Biochemistry 17: 4978–4986

    Article  CAS  Google Scholar 

  54. Ng RH, Howard BD (1980)Mitochondria and sarcoplasmic reticulum as model targets for neurotoxic and myotoxic phospholipasesA2. Proc. Nat. Acad. Sci. USA 77: 1346–1350

    Article  CAS  Google Scholar 

  55. Nishiki T, Tokuyama Y, Kamata Y, Nemoto Y, Yoshida A, Sato K, Sekiguchi M, Takahashi M, Kozaki S (1996) The high-affinity binding of Clostridium botulinum type B neurotoxin to synaptotagmin II associated with gangliosides GT1b/GD1a. FEBS Lett. 378: 253–257

    Article  CAS  Google Scholar 

  56. Payling-Wright G (1955) The neurotoxins of Clostridium botulinum and Clostridium tetani. Pharmacol. Rev. 7: 413–465

    Google Scholar 

  57. Pearson JA, Tyler MI, Retson KV, Howden ME (1993) Studies on the subunit structure of textilotoxin, a potent presynaptic neurotoxin from the venom of the australian common brown snake (pseudonaja textilis). 3. the complete amino-acid sequences of all the subunits. Biochim Biophys Acta, 1161: 223–229

    CAS  Google Scholar 

  58. Petrovic U, Sribar J, Paris A, Rupnik M, Krzan M, Vardjan N, Gubensek F, Zorec R, Krizaj I (2004) Ammodytoxin, a neurotoxic secreted phospholipase A(2), can act in the cytosol of the nerve cell. Biochem. Biophys. Res. Commun. 324: 981–985

    Article  CAS  Google Scholar 

  59. Prasarnpun S, Walsh J, Harris JB (2004) Beta-bungarotoxin-induced depletion of synaptic vesicles at the mammalian neuromuscular junction. Neuropharmacology 47: 304–314

    Article  CAS  Google Scholar 

  60. Prasarnpun S, Walsh J, Awad SS, Harris JB (2005) Envenoming bites by kraits: the biological basis of treatment-resistant neuromuscular paralysis. Brain., 128: 2987–2996

    Article  CAS  Google Scholar 

  61. Puhar A, Johnson EA, Rossetto O, Montecucco C (2004) Comparison of the pH-induced conformational rearrangement of different clostridial neurotoxins. Biochem.Biophys.Res. Commun. 319: 66–71

    Article  CAS  Google Scholar 

  62. Pumplin DW, Reese TS (1977)Action of brown widow spider venom and botulinum toxin on the frog neuromuscular junction examined with the freeze-fracture technique. J. Physiol. 273: 443–457

    CAS  Google Scholar 

  63. Rigoni M, Caccin P, Gschmeissner S, Koster G, Postle Ad, Rossetto O, Schiavo G, Montecucco C (2005) Equivalent Effects of Snake PLA2 Neurotoxins and Lysophospholipid-Fatty Acid Mixtures. Science 310: 1678–1680

    Article  CAS  Google Scholar 

  64. Rigoni M, Schiavo G, Weston AE, Caccin P, Allegrini F, Pennuto M, Valtorta F, Montecucco C, Rossetto O (2004) Snake presynaptic neurotoxins with phospholipase A2 activity induce puntate swellings of neurites and exocytosis of synaptic vesicles. J. Cell Sci. 117: 3561–1570

    Article  CAS  Google Scholar 

  65. Rossetto O, Montecucco C (2004) Clostridial neurotoxins. In: Proft T (ed.), Microbial Toxins.Molecular and Cellular Biology. Horizon Scientific Press, Norfolk, UK: 149–178

    Google Scholar 

  66. Rummel A, Bade S, Alves J, Bigalke H, Binz T (2003) Two carbohydrate binding sites in the H(CC)-domain of tetanus neurotoxin are required for toxicity. J. Mol. Biol. 326:835–847

    Article  CAS  Google Scholar 

  67. Rummel A, Karnath T, Henke T, Bigalke H, Binz T (2004) Synaptotagmin I and II act as nerve cell receptors for botulinum neurotoxin G. J. Biol. Chem. 279: 30865-30870

    Google Scholar 

  68. Schiavo G, Matteoli M, Montecucco C (2000) Neurotoxins Affecting Neuroexocytosis. Physiol. Rev. 80: 717–766

    CAS  Google Scholar 

  69. Simpson LL (2000) Identification of the characteristics that underlie botulinum toxin potency implications for designing novel drugs. Biochimie 82: 943–953

    Article  CAS  Google Scholar 

  70. Simpson LL, Coffield JA, Bakry N (1994). Inhibition of vacuolar adenosine triphosphatase antagonizes the effects of clostridial neurotoxins but not phospholipaseA2 neurotoxins. J. Pharmacol. Exp. Ther. 269: 256–262

    CAS  Google Scholar 

  71. Simpson LL, Lautenslager GT, Kaiser II, Middlebrook JL (1993) Identification of the site at which phospholipase A2 neurotoxins localise to produce their neuromuscular blocking effects. Toxicon, 31: 13–26

    Article  CAS  Google Scholar 

  72. Singh G, Gourinath S, Sharma S, Paramasivam M, Srinivasan A, Singh TP (2001) Sequence and crystal structure determination of a basic phospholipase A2 from common krait (Bungarus caeruleus) at 2.4 A resolution: identification and characterization of its pharmacological sites. J. Mol. Biol. 307: 1049–1059

    Article  CAS  Google Scholar 

  73. Sribar J, Copic A, Paris A, Sherman NE, Gubensek F, Fox JW, Krizaj I (2001) A high affinity acceptor for phospholipase A2 with neurotoxic activity is a calmodulin. J. Biol. Chem. 276: 12493-12496

    Google Scholar 

  74. Sribar J, Copic A, Poljsak-Prijatelj M, Kuret J, Logonder U, Gubensek F, Krizaj I (2003a) R25 is an intracellular membrane receptor for a snake venom secretori phospholipase A(2). FEBS Lett. 553: 309–314

    Article  CAS  Google Scholar 

  75. Sribar J, Sherman NE, Prijatelj P, Faure G, Gubensek F, Fox JW, Aitken A, Pungercar J, Krizaj I (2003b) The neurotoxic phospholipase A2 associates, through a non-phosphorylated binding motif, with 14-3-3 protein gamma and epsilon isoforms. Biochem. Biophys. Res. Commun. 302: 691–696

    Article  CAS  Google Scholar 

  76. Swaminathan S, Eswaramoorthy S (2000) Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B. Nat. Struct. Biol. 7: 693–699

    Article  CAS  Google Scholar 

  77. Tacket CO, Rogawski MA (1989) Botulism. In: Simpson LL (ed) Botulinum Neurotoxins and Tetanus Toxin, Academic Press, San Diego: 351–378

    Google Scholar 

  78. Theakston RD, Phillips RE, Warrell DA, Galagedera Y, Abeysekera DT, Dissanayaka P, De Silva A, Aloysius DJ (1990) Envenoming by the common krait (Bungarus caeruleus) and Sri Lankan cobra (Naja naja naja): efficacy and complications of therapy with Haffkine antivenom. Trans. R. Soc. Trop. Med. Hyg. 84: 301–308

    Article  CAS  Google Scholar 

  79. Warrell DA, Looareesuwan S, White NJ, Theakston RD, Warrell MJ, Kosakarn W, Reid HA (1983) Severe neurotoxic envenoming by the Malayan krait Bungarus candidus (Linnaeus): response to antivenom and anticholinesterase. Br. Med. J. 286: 678–680

    CAS  Google Scholar 

  80. Weinstein L (1973) Tetanus. N. Engl. J. Med. 289: 1293–1296

    CAS  Google Scholar 

  81. Westerlund B, Nordlund P, Uhlin U, Eaker D, Eklund H (1992) The three-dimensional structure of notexin, a presynaptic neurotoxic phospholipase A2 at 2.0 A resolution. FEBS Lett. 301: 159–164

    Article  CAS  Google Scholar 

  82. Yang CC (1997) Chemical modification and functional sites of phospholipases A2, In:Kini RM (ed), Venom Phospholipase A2 Enzymes. John Wiley & Sons, Chichester: 185–204

    Google Scholar 

  83. Zimmerberg J, Chernomordik LV (2005) Neuroscience. Synaptic membranes bend to the will of a neurotoxin. Science 310: 1626–1627

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesare Montecucco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossetto, O., Morbiato, L., Caccin, P. et al. Tetanus, botulinum and snake presynaptic neurotoxins. Rend. Fis. Acc. Lincei 19, 173–188 (2008). https://doi.org/10.1007/s12210-008-0010-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-008-0010-z

Keywords

Subject code

Navigation