Skip to main content
Log in

Designing Membrane Electrode Assembly for Electrochemical CO2 Reduction: a Review

  • Review
  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

Currently, the electrochemical CO2 reduction reaction (CO2RR) can realize the resource conversion of CO2, which is a promising approach to carbon resource use. Important advancements have been made in exploring the CO2RR performance and mechanism because of the rational design of electrolyzer systems, such as H-cells, flow cells, and catalysts. Considering the future development direction of this technology and large-scale application needs, membrane electrode assembly (MEA) systems can improve energy use efficiency and achieve large-scale CO2 conversion, which is considered the most promising technology for industrial applications. This review will concentrate on the research progress and present situation of the MEA component structure. This paper begins with the composition and construction of a gas diffusion electrode. Then, the application of ion-exchange membranes in MEA is introduced. Furthermore, the effects of pH and the anion and cation of the anolyte on MEA performance are explored. Additionally, we present the anode reaction type in MEA. Finally, the challenges in this field are summarized, and upcoming trends are projected. This review should offer researchers a clearer picture of MEA systems and provide important, timely, and valuable insights into rational electrolyzer design to facilitate further development of CO2 electrochemical reduction.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Costentin C, Robert M, Savéant JM (2013) Catalysis of the electrochemical reduction of carbon dioxide. Chem Soc Rev 42(6):2423–2436

    Article  Google Scholar 

  2. Schreier M, Héroguel F, Steier L et al (2017) Solar conversion of CO2–CO using earth-abundant electrocatalysts prepared by atomic layer modification of CuO. Nat Energy 2(7):17087

    Article  Google Scholar 

  3. Bushuyev OS, De Luna P, Dinh CT et al (2018) What should we make with CO2 and how can we make it? Joule 2(5):825–832

    Article  Google Scholar 

  4. Gao D, Wei P, Li H et al (2020) Designing electrolyzers for electrocatalytic CO2 reduction. Acta Phys Chim Sin 37:2009020–2009021

    Google Scholar 

  5. Voiry D, Shin HS, Loh KP et al (2018) Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nat Rev Chem 2:105

    Article  Google Scholar 

  6. Lees EW, Mowbray BAW, Parlane FGL et al (2022) Gas diffusion electrodes and membranes for CO2 reduction electrolysers. Nat Rev Mater 7:55–64

    Article  Google Scholar 

  7. Zhang S, Fan Q, Xia R et al (2020) CO2 reduction: from homogeneous to heterogeneous electrocatalysis. Acc Chem Res 53(1):255–264

    Article  Google Scholar 

  8. Pan F, Yang Y (2020) Designing CO2 reduction electrode materials by morphology and interface engineering. Energy Environ Sci 13(8):2275–2309

    Article  Google Scholar 

  9. Gu J, Hsu CS, Bai L et al (2019) Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 364(6445):1091–1094

    Article  Google Scholar 

  10. Cheng Y, Hou P, Wang X et al (2022) CO2 electrolysis system under industrially relevant conditions. Acc Chem Res 55(3):231–240

    Article  Google Scholar 

  11. Lin R, Guo J, Li X et al (2020) Electrochemical reactors for CO2 conversion. Catalysts 10(5):473

    Article  Google Scholar 

  12. Overa S, Ko BH, Zhao Y et al (2022) Electrochemical approaches for CO2 conversion to chemicals: a journey toward practical applications. Acc Chem Res 55(5):638–648

    Article  Google Scholar 

  13. Rabiee H, Ge L, Zhang X et al (2021) Gas diffusion electrodes (GDEs) for electrochemical reduction of carbon dioxide, carbon monoxide, and dinitrogen to value-added products: a review. Energy Environ Sci 14(4):1959–2008

    Article  Google Scholar 

  14. Wakerley D, Lamaison S, Wicks J et al (2022) Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers. Nat Energy 7:130–143

    Article  Google Scholar 

  15. Reyes A, Jansonius RP, Mowbray BAW et al (2020) Managing hydration at the cathode enables efficient CO2 electrolysis at commercially relevant current densities. ACS Energy Lett 5(5):1612–1618

    Article  Google Scholar 

  16. Ma D, Jin T, Xie K et al (2021) An overview of flow cell architecture design and optimization for electrochemical CO2 reduction. J Mater Chem A 9(37):20897–20918

    Article  Google Scholar 

  17. Weng LC, Bell AT, Weber AZ (2018) Modeling gas-diffusion electrodes for CO2 reduction. Phys Chem Chem Phys 20(25):16973–16984

    Article  Google Scholar 

  18. Lapicque F, Belhadj M, Bonnet C et al (2016) A critical review on gas diffusion micro and macroporous layers degradations for improved membrane fuel cell durability. J Power Sources 336:40–53

    Article  Google Scholar 

  19. Leonard ME, Clarke LE, Forner-Cuenca A et al (2020) Investigating electrode flooding in a flowing electrolyte, gas-fed carbon dioxide electrolyzer. Chemsuschem 13(2):400–411

    Article  Google Scholar 

  20. Shi R, Guo J, Zhang X et al (2020) Efficient wettability-controlled electroreduction of CO2 to CO at Au/C interfaces. Nat Commun 11(1):3028

    Article  Google Scholar 

  21. Gabardo CM, O’Brien CP, Edwards JP et al (2019) Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly. Joule 3(11):2777–2791

    Article  Google Scholar 

  22. Velayutham G, Kaushik J, Rajalakshmi N et al (2007) Effect of PTFE content in gas diffusion media and microlayer on the performance of PEMFC tested under ambient pressure. Fuel Cells 7(4):314–318

    Article  Google Scholar 

  23. Kim B, Hillman F, Ariyoshi M et al (2016) Effects of composition of the micro porous layer and the substrate on performance in the electrochemical reduction of CO2 to CO. J Power Sources 312:192–198

    Article  Google Scholar 

  24. Zhong M, Tran K, Min Y et al (2020) Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581(7807):178–183

    Article  Google Scholar 

  25. Orogbemi OM, Ingham DB, Ismail MS et al (2016) The effects of the composition of microporous layers on the permeability of gas diffusion layers used in polymer electrolyte fuel cells. Int J Hydrog Energy 41(46):21345–21351

    Article  Google Scholar 

  26. Wang Z, Li Y, Zhao X et al (2023) Localized alkaline environment via in situ electrostatic confinement for enhanced CO2-to-ethylene conversion in neutral medium. J Am Chem Soc 145(11):6339–6348

    Article  Google Scholar 

  27. Liu M, Hu H, Kong Y et al (2023) The role of ionomers in the electrolyte management of zero-gap MEA-based CO2 electrolysers: a Fumion versus Nafion comparison. Appl Catal B Environ 335:122885

    Article  Google Scholar 

  28. Merino-Garcia I, Alvarez-Guerra E, Albo J et al (2016) Electrochemical membrane reactors for the utilisation of carbon dioxide. Chem Eng J 305:104–120

    Article  Google Scholar 

  29. Weekes DM, Salvatore DA, Reyes A et al (2018) Electrolytic CO2 reduction in a flow cell. Acc Chem Res 51(4):910–918

    Article  Google Scholar 

  30. Salvatore DA, Gabardo CM, Reyes A et al (2021) Designing anion exchange membranes for CO2 electrolysers. Nat Energy 6:339–348

    Article  Google Scholar 

  31. Kibria MG, Edwards JP, Gabardo CM et al (2019) Electrochemical CO2 reduction into chemical feedstocks: from mechanistic electrocatalysis models to system design. Adv Mater 31(31):e1807166

    Article  Google Scholar 

  32. Zheng Y, Jiao Y, Vasileff A et al (2018) The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts. Angew Chem Int Ed Engl 57(26):7568–7579

    Article  Google Scholar 

  33. Jiang K, Siahrostami S, Zheng T et al (2018) Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ Sci 11(4):893–903

    Article  Google Scholar 

  34. Yanagi R, Zhao T, Cheng M et al (2023) Photocatalytic CO2 reduction with dissolved carbonates and near-zero CO2(aq) by employing long-range proton transport. J Am Chem Soc 145(28):15381–15392

    Article  Google Scholar 

  35. Hori Y, Ito H, Okano K et al (2003) Silver-coated ion exchange membrane electrode applied to electrochemical reduction of carbon dioxide. Electrochim Acta 48(18):2651–2657

    Article  Google Scholar 

  36. Sassenburg M, Kelly M, Subramanian S et al (2022) Zero-gap electrochemical CO2 reduction cells: challenges and operational strategies for prevention of salt precipitation. ACS Energy Lett 8(1):321–331

    Article  Google Scholar 

  37. Xu Y, Miao RK, Edwards JP et al (2022) A microchanneled solid electrolyte for carbon-efficient CO2 electrolysis. Joule 6(6):1333–1343

    Article  Google Scholar 

  38. Pan B, Fan J, Zhang J et al (2022) Close to 90% single-pass conversion efficiency for CO2 electroreduction in an acid-fed membrane electrode assembly. ACS Energy Lett 7(12):4224–4231

    Article  Google Scholar 

  39. Lee W, Kim YE, Youn MH et al (2018) Catholyte-free electrocatalytic CO2 reduction to formate. Angew Chem Int Ed Engl 57(23):6883–6887

    Article  Google Scholar 

  40. Zhang Z, Huang X, Chen Z et al (2023) Membrane electrode assembly for electrocatalytic CO2 reduction: principle and application. Angew Chem Int Ed Engl 62(28):e202302789

    Article  Google Scholar 

  41. Xie K, Miao RK, Ozden A et al (2022) Bipolar membrane electrolyzers enable high single-pass CO2 electroreduction to multicarbon products. Nat Commun 13(1):3609

    Article  Google Scholar 

  42. Blommaert MA, Aili D, Tufa RA et al (2021) Insights and challenges for applying bipolar membranes in advanced electrochemical energy systems. ACS Energy Lett 6(7):2539–2548

    Article  Google Scholar 

  43. McDonald MB, Ardo S, Lewis NS et al (2014) Use of bipolar membranes for maintaining steady-state pH gradients in membrane-supported, solar-driven water splitting. Chemsuschem 7(11):3021–3027

    Article  Google Scholar 

  44. Vargas-Barbosa NM, Geise GM, Hickner MA et al (2014) Assessing the utility of bipolar membranes for use in photoelectrochemical water-splitting cells. Chemsuschem 7(11):3017–3020

    Article  Google Scholar 

  45. Li YC, Zhou D, Yan Z et al (2016) Electrolysis of CO2 to syngas in bipolar membrane-based electrochemical cells. ACS Energy Lett 1:1149–1153

    Article  Google Scholar 

  46. Yang K, Li M, Subramanian S et al (2021) Cation-driven increases of CO2 utilization in a bipolar membrane electrode assembly for CO2 electrolysis. ACS Energy Lett 6(12):4291–4298

    Article  Google Scholar 

  47. Vermaas DA, Smith WA (2016) Synergistic electrochemical CO2 reduction and water oxidation with a bipolar membrane. ACS Energy Lett 1(6):1143–1148

    Article  Google Scholar 

  48. Nitopi S, Bertheussen E, Scott SB et al (2019) Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem Rev 119(12):7610–7672

    Article  Google Scholar 

  49. Zhong H, Fujii K, Nakano Y et al (2015) Effect of CO2 bubbling into aqueous solutions used for electrochemical reduction of CO2 for energy conversion and storage. J Phys Chem C 119(1):55–61

    Article  Google Scholar 

  50. Ma M, Clark EL, Therkildsen KT et al (2020) Insights into the carbon balance for CO2 electroreduction on Cu using gas diffusion electrode reactor designs. Energy Environ Sci 13(3):977–985

    Article  Google Scholar 

  51. Liu M, Pang Y, Zhang B et al (2016) Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537(7620):382–386

    Article  Google Scholar 

  52. Bohra D, Chaudhry JH, Burdyny T et al (2019) Modeling the electrical double layer to understand the reaction environment in a CO2 electrocatalytic system. Energy Environ Sci 12(11):3380–3389

    Article  Google Scholar 

  53. Li Z, Sun B, Xiao D et al (2023) Electron-rich Bi nanosheets promote CO2- formation for high-performance and pH-universal electrocatalytic CO2 reduction. Angew Chem Int Ed Engl 62(11):e202217569

    Article  Google Scholar 

  54. Ma M, Djanashvili K, Smith WA (2016) Controllable hydrocarbon formation from the electrochemical reduction of CO2 over Cu nanowire arrays. Angew Chem Int Ed Engl 55(23):6680–6684

    Article  Google Scholar 

  55. Varela AS, Kroschel M, Leonard ND et al (2018) pH effects on the selectivity of the electrocatalytic CO2 reduction on graphene-embedded Fe–N–C motifs: bridging concepts between molecular homogeneous and solid-state heterogeneous catalysis. ACS Energy Lett 3(4):812–817

    Article  Google Scholar 

  56. Baricuatro JH, Kwon S, Kim YG et al (2021) Operando electrochemical spectroscopy for CO on Cu(100) at pH 1–13:validation of grand canonical potential predictions. ACS Catal 11(5):3173–3181

    Article  Google Scholar 

  57. Sebastián-Pascual P, Petersen AS, Bagger A et al (2021) pH and anion effects on Cu–phosphate interfaces for CO electroreduction. ACS Catal 11(3):1128–1135

    Article  Google Scholar 

  58. Lu X, Zhu C, Wu Z et al (2020) In situ observation of the pH gradient near the gas diffusion electrode of CO2 reduction in alkaline electrolyte. J Am Chem Soc 142(36):15438–15444

    Article  Google Scholar 

  59. Zhang Z, Melo L, Jansonius RP et al (2020) pH matters when reducing CO2 in an electrochemical flow cell. ACS Energy Lett 5(10):3101–3107

    Article  Google Scholar 

  60. She X, Zhai L, Wang Y et al (2024) Pure-water-fed, electrocatalytic CO2 reduction to ethylene beyond 1000 h stability at 10 A. Nat Energy 9:81–91

    Article  Google Scholar 

  61. O’Brien CP, Miao RK, Liu S et al (2021) Single pass CO2 conversion exceeding 85% in the electrosynthesis of multicarbon products via local CO2 regeneration. ACS Energy Lett 6(8):2952–2959

    Article  Google Scholar 

  62. Kim C, Bui JC, Luo X et al (2021) Tailored catalyst microenvironments for CO2 electroreduction to multicarbon products on copper using bilayer ionomer coatings. Nat Energy 6:1026–1034

    Article  Google Scholar 

  63. Park J, Ko YJ, Lim C et al (2023) Strategies for CO2 electroreduction in cation exchange membrane electrode assembly. Chem Eng J 453:139826

    Article  Google Scholar 

  64. Le D, Rahman TS (2022) On the role of metal cations in CO2 electrocatalytic reduction. Nat Catal 5:977–978

    Article  Google Scholar 

  65. Bhugun I, Lexa D, Savéant JM (1996) Catalysis of the electrochemical reduction of carbon dioxide by iron (0) porphyrins synergistic effect of Lewis acid cations. J Phys Chem 100(51):19981–19985

    Article  Google Scholar 

  66. Jin Z, Guo Y, Qiu C (2022) Electro-conversion of carbon dioxide to valuable chemicals in a membrane electrode assembly. Sustainability 14(9):5579

    Article  Google Scholar 

  67. Murata A, Hori Y (1991) Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode. Bull Chem Soc Jpn 64(1):123–127

    Article  Google Scholar 

  68. Endrődi B, Samu A, Kecsenovity E et al (2021) Operando cathode activation with alkali metal cations for high current density operation of water-fed zero-gap carbon dioxide electrolyzers. Nat Energy 6(4):439–448

    Article  Google Scholar 

  69. Hsieh YC, Senanayake SD, Zhang Y et al (2015) Effect of chloride anions on the synthesis and enhanced catalytic activity of silver nanocoral electrodes for CO2 electroreduction. ACS Catal 5(9):5349–5356

    Article  Google Scholar 

  70. Resasco J, Lum Y, Clark E et al (2018) Effects of anion identity and concentration on electrochemical reduction of CO2. ChemElectroChem 5(7):1064–1072

    Article  Google Scholar 

  71. Deng B, Huang M, Zhao X et al (2021) Interfacial electrolyte effects on electrocatalytic CO2 reduction. ACS Catal 12(1):331–362

    Article  Google Scholar 

  72. Gabardo CM, Seifitokaldani A, Edwards JP et al (2018) Combined high alkalinity and pressurization enable efficient CO2 electroreduction to CO. Energy Environ Sci 11(9):2531–2539

    Article  Google Scholar 

  73. Ogura K, Ferrell JR, Cugini AV et al (2010) CO2 attraction by specifically adsorbed anions and subsequent accelerated electrochemical reduction. Electrochim Acta 56(1):381–386

    Article  Google Scholar 

  74. Lv X, Yang Y, Lv J et al (2023) Iodine-mediated C─C coupling in neutral flow cell for electrochemical CO2 reduction. Adv Funct Mater 34:2311236

    Article  Google Scholar 

  75. Varela AS, Ju W, Reier T et al (2016) Tuning the catalytic activity and selectivity of Cu for CO2 electroreduction in the presence of halides. ACS Catal 6(4):2136–2144

    Article  Google Scholar 

  76. Wang J, Qin Y, Jin S et al (2023) Customizing CO2 electroreduction by pulse-induced anion enrichment. J Am Chem Soc 145(48):26213–26221

    Article  Google Scholar 

  77. Wu QJ, Si DH, Wu Q et al (2023) Boosting electroreduction of CO2 over cationic covalent organic frameworks: hydrogen bonding effects of halogen ions. Angew Chem Int Ed Engl 62(7):e202215687

    Article  Google Scholar 

  78. Yun H, Choi W, Shin D et al (2023) Atomic arrangement of AuAg alloy on carbon support enhances electrochemical CO2 reduction in membrane electrode assembly. ACS Catal 13(13):9302–9312

    Article  Google Scholar 

  79. Li D, Yang J, Lian J et al (2023) Recent advances in paired electrolysis coupling CO2 reduction with alternative oxidation reactions. J Energy Chem 77:406–419

    Article  Google Scholar 

  80. Chen H, Ding C, Kang C et al (2023) The design of alternative anodic reactions paired with electrochemical CO2 reduction. Green Chem 25(14):5320–5337

    Article  Google Scholar 

  81. Na J, Seo B, Kim J et al (2019) General technoeconomic analysis for electrochemical coproduction coupling carbon dioxide reduction with organic oxidation. Nat Commun 10(1):5193

    Article  Google Scholar 

  82. Verma S, Lu S, Kenis PJA (2019) Co-electrolysis of CO2 and glycerol as a pathway to carbon chemicals with improved technoeconomics due to low electricity consumption. Nat Energy 4:466–474

    Article  Google Scholar 

  83. Wei X, Li Y, Chen L et al (2021) Formic acid electro-synthesis by concurrent cathodic CO2 reduction and anodic CH3OH oxidation. Angew Chem Int Ed Engl 60(6):3148–3155

    Article  Google Scholar 

  84. Cao C, Ma DD, Jia J et al (2021) Divergent paths, same goal: a pair-electrosynthesis tactic for cost-efficient and exclusive formate production by metal-organic-framework-derived 2D electrocatalysts. Adv Mater 33(25):e2008631

    Article  Google Scholar 

  85. Zhou Y, Wang Z, Fang W et al (2023) Modulating O–H activation of methanol oxidation on nickel-organic frameworks for overall CO2 electrolysis. ACS Catal 13(3):2039–2046

    Article  Google Scholar 

  86. Xie K, Ozden A, Miao RK et al (2022) Eliminating the need for anodic gas separation in CO2 electroreduction systems via liquid-to-liquid anodic upgrading. Nat Commun 13:3070

    Article  Google Scholar 

Download references

Acknowledgements

All authors have given approval to the final version of the manuscript. The financial assistance for this work was provided by the National Natural Science Foundation of China (Nos. 51773092, 21975124, 20210283, and 22109070), and the Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure (No. SKL201911SIC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhui Chen.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhao, S., Guo, T. et al. Designing Membrane Electrode Assembly for Electrochemical CO2 Reduction: a Review. Trans. Tianjin Univ. 30, 117–129 (2024). https://doi.org/10.1007/s12209-024-00390-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-024-00390-5

Keywords

Navigation