Skip to main content
Log in

Highly Defective Dark TiO2 Modified with Pt: Effects of Precursor Nature and Preparation Method on Photocatalytic Properties

  • Research Article
  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

The study focused on the modification with platinum of dark defective titania obtained via pulsed laser ablation. Both the method of Pt introduction and the nature of the Pt precursor were varied. All samples exhibited similar phase compositions, specific surface areas, and Pt contents. High-resolution transmission electron microscopy coupled with pulsed CO adsorption revealed increased dispersity when photoreduction and the hydroxonitrate complex (Me4N)2[Pt2(OH)2(NO3)8] were used. The sample featured a high content of single-atom species and subnano-sized Pt clusters. The X-ray photoelectron spectroscopy results showed that the photoreduction method facilitated the appearance of a larger number of Pt2+ states, which appeared owing to the strong metal–support interaction (SMSI) effect of the transfer of electron density from the electron-saturated defects on the TiO2 surface to Pt4+. In the hydrogen evolution reaction, samples with a significant fraction of the Pt2+ ionic component, capable of generating short-lived Pt0 single-atom sites under irradiation due to the SMSI effect, exhibited the highest photocatalytic activity. The 0.5Pt(C)/TiO2–Ph sample exhibited the highest hydrogen yield with a quantum efficiency of 0.53, retaining its activity even after 8 h of operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dessal C, Martínez L, Maheu C et al (2019) Influence of Pt particle size and reaction phase on the photocatalytic performances of ultradispersed Pt/TiO2 catalysts for hydrogen evolution. J Catal 375:155–163

    Article  Google Scholar 

  2. Kumaravel V, Mathew S, Bartlett J et al (2019) Photocatalytic hydrogen production using metal doped TiO2: a review of recent advances. Appl Catal B Environ 244:1021–1064

    Article  Google Scholar 

  3. Tian L, Guan X, Zong S et al (2023) Cocatalysts for photocatalytic overall water splitting: a mini review. Catalysts 13(2):355

    Article  Google Scholar 

  4. Sun Y, Kumar V, Kim KH (2023) The assessment of graphitic carbon nitride (g-C3N4) materials for hydrogen evolution reaction: effect of metallic and non-metallic modifications. Sep Purif Technol 305:122413

    Article  Google Scholar 

  5. Mehtab A, Mao Y, Alshehri SM et al (2023) Photo/electrocatalytic hydrogen evolution using Type-II Cu2O/g-C3N4 heterostructure: density functional theory addresses the improved charge transport efficiency. J Colloid Interface Sci 652(Pt B):1467–1480

    Article  Google Scholar 

  6. Sun X, Hu T, Sun Y et al (2023) Flower-like spherical ZnCdS/Bi2WO6/ZnAl-LDH with dual type II heterostructure as a photocatalyst for efficient photocatalytic degradation and hydrogen production. J Phys Chem Solids 183:111650

    Article  Google Scholar 

  7. Al-Azri ZHN, Chen WT, Chan A et al (2015) The roles of metal co-catalysts and reaction media in photocatalytic hydrogen production: performance evaluation of M/TiO2 photocatalysts (M = Pd, Pt, Au) in different alcohol–water mixtures. J Catal 329:355–367

    Article  Google Scholar 

  8. Ran J, Zhang J, Yu J et al (2014) Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem Soc Rev 43(22):7787–7812

    Article  Google Scholar 

  9. Esrafili A, Salimi M, jonidi jafari A, et al (2022) Pt-based TiO2 photocatalytic systems: a systematic review. J Mol Liq 352:118685

    Article  Google Scholar 

  10. Ismael M (2021) Latest progress on the key operating parameters affecting the photocatalytic activity of TiO2-based photocatalysts for hydrogen fuel production: a comprehensive review. Fuel 303:121207

    Article  Google Scholar 

  11. Naik KM, Higuchi E, Inoue H (2020) Pt nanoparticle-decorated two-dimensional oxygen-deficient TiO2 nanosheets as an efficient and stable electrocatalyst for the hydrogen evolution reaction. Nanoscale 12(20):11055–11062

    Article  Google Scholar 

  12. Cao S, Chan TS, Lu YR et al (2020) Photocatalytic pure water splitting with high efficiency and value by Pt/porous brookite TiO2 nanoflutes. Nano Energy 67:104287

    Article  Google Scholar 

  13. Slamet TD, Valentina, et al (2013) Photocatalytic hydrogen production from glycerol–water mixture over Pt-N-TiO2 nanotube photocatalyst. Int J Energy Res 37(11):1372–1381

    Article  Google Scholar 

  14. Lakshminarasimhan N, Bokare AD, Choi W (2012) Effect of agglomerated state in mesoporous TiO2 on the morphology of photodeposited Pt and photocatalytic activity. J Phys Chem C 116(33):17531–17539

    Article  Google Scholar 

  15. Mendez FJ, Barron-Romero D, O. Perez A, et al (2023) highly efficient and recyclable Pt/TiO2 thin film photocatalytic system for sustainable hydrogen production. Mater Chem Phys 305:127925

    Article  Google Scholar 

  16. Lee J, Choi W (2005) Photocatalytic reactivity of surface platinized TiO2: substrate specificity and the effect of Pt oxidation state. J Phys Chem B 109(15):7399–7406

    Article  Google Scholar 

  17. Parayil SK, Kibombo HS, Wu CM et al (2013) Synthesis-dependent oxidation state of platinum on TiO2 and their influences on the solar simulated photocatalytic hydrogen production from water. J Phys Chem C 117(33):16850–16862

    Article  Google Scholar 

  18. Li JJ, Zhang M, Weng B et al (2020) Zero-degree photochemical synthesis of highly dispersed Pt/TiO2 for enhanced photocatalytic hydrogen generation. J Alloys Compd 849:156634

    Article  Google Scholar 

  19. Wenderich K, Mul G (2016) Methods, mechanism, and applications of photodeposition in photocatalysis: a review. Chem Rev 116(23):14587–14619

    Article  Google Scholar 

  20. Tossi C, Hällström L, Selin J et al (2019) Size- and density-controlled photodeposition of metallic platinum nanoparticles on titanium dioxide for photocatalytic applications. J Mater Chem A 7(24):14519–14525

    Article  Google Scholar 

  21. Cui A, Ren P, Bai Y et al (2022) Nanoparticle size effect of Pt and TiO2 anatase/rutile phases “volcano-type” curve for HOR electrocatalytic activity at Pt/TiO2-CNx nanocatalysts. Appl Surf Sci 584:152644

    Article  Google Scholar 

  22. Zielińska-Jurek W, Janczarek, et al (2019) Size-controlled synthesis of Pt particles on TiO2 surface: physicochemical characteristic and photocatalytic activity. Catalysts 9(11):940

    Article  Google Scholar 

  23. Sun S, Wu X, Huang Z et al (2022) Engineering stable Pt nanoclusters on defective two-dimensional TiO2 nanosheets by introducing SMSI for efficient ambient formaldehyde oxidation. Chem Eng J 435:135035

    Article  Google Scholar 

  24. Tang P, Lee HJ, Hurlbutt K et al (2022) Elucidating the formation and structural evolution of platinum single-site catalysts for the hydrogen evolution reaction. ACS Catal 12(5):3173–3180

    Article  Google Scholar 

  25. Cha G, Mazare A, Hwang I et al (2022) A facile “dark” -deposition approach for Pt single-atom trapping on facetted anatase TiO2 nanoflakes and use in photocatalytic H2 generation. Electrochim Acta 412:140129

    Article  Google Scholar 

  26. Chen Y, Ding R, Li J et al (2022) Highly active atomically dispersed platinum-based electrocatalyst for hydrogen evolution reaction achieved by defect anchoring strategy. Appl Catal B Environ 301:120830

    Article  Google Scholar 

  27. DeRita L, Dai S, Lopez-Zepeda K et al (2017) Catalyst architecture for stable single atom dispersion enables site-specific spectroscopic and reactivity measurements of CO adsorbed to Pt atoms, oxidized Pt clusters, and metallic Pt clusters on TiO2. J Am Chem Soc 139(40):14150–14165

    Article  Google Scholar 

  28. Qin L, Wang G, Tan Y (2018) Plasmonic Pt nanoparticles—TiO2 hierarchical nano-architecture as a visible light photocatalyst for water splitting. Sci Rep 8:16198

    Article  Google Scholar 

  29. Han B, Guo Y, Huang Y et al (2020) Strong metal-support interactions between Pt single atoms and TiO2. Angew Chem Int Ed Engl 59(29):11824–11829

    Article  Google Scholar 

  30. Chen X, Liu L, Yu PY et al (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331(6018):746–750

    Article  Google Scholar 

  31. Zhao H, Pan F, Li Y (2017) A review on the effects of TiO2 surface point defects on CO2 photoreduction with H2O. J Materiomics 3(1):17–32

    Article  Google Scholar 

  32. Zhao B, Wang X, Zhang Y et al (2019) Synergism of oxygen vacancies, Ti3+ and N dopants on the visible-light photocatalytic activity of N-doped TiO2. J Photochem Photobiol A Chem 382:111928

    Article  Google Scholar 

  33. Zhu K, Shi F, Zhu X et al (2020) The roles of oxygen vacancies in electrocatalytic oxygen evolution reaction. Nano Energy 73:104761

    Article  Google Scholar 

  34. Fakhrutdinova ED, Shabalina AV, Gerasimova MA et al (2020) Highly defective dark nano titanium dioxide: preparation via pulsed laser ablation and application. Materials 13(9):2054

    Article  Google Scholar 

  35. Shang H, Li M, Li H et al (2019) Oxygen vacancies promoted the selective photocatalytic removal of NO with blue TiO2 via simultaneous molecular oxygen activation and photogenerated hole annihilation. Environ Sci Technol 53(11):6444–6453

    Article  Google Scholar 

  36. Fakhrutdinova E, Reutova O, Maliy L et al (2022) Laser-based synthesis of TiO2–Pt photocatalysts for hydrogen generation. Materials 15(21):7413

    Article  Google Scholar 

  37. Naldoni A, Altomare M, Zoppellaro G et al (2019) Photocatalysis with reduced TiO2: from black TiO2 to cocatalyst-free hydrogen production. ACS Catal 9(1):345–364

    Article  Google Scholar 

  38. Wang C, Li Y, Zhang C et al (2021) A simple strategy to improve Pd dispersion and enhance Pd/TiO2 catalytic activity for formaldehyde oxidation: the roles of surface defects. Appl Catal B Environ 282:119540

    Article  Google Scholar 

  39. Wang X, Zou X, Rui Z et al (2020) Highly dispersed and active Pd nanoparticles over titania support through engineering oxygen vacancies and their anchoring effect. AIChE J 66(8):e16288

    Article  Google Scholar 

  40. Oh S, Ha H, Choi H et al (2019) Oxygen activation on the interface between Pt nanoparticles and mesoporous defective TiO2 during CO oxidation. J Chem Phys 151(23):234716

    Article  Google Scholar 

  41. Fedorovich ZP, Gerasimova MA, Fakhrutdinova ED et al (2022) Effect of laser and temperature treatment on the optical properties of titanium dioxide nanoparticles prepared via pulsed laser ablation. Russ Phys J 64(11):2115–2122

    Article  Google Scholar 

  42. Kibis LS, Svintsitskiy DA, Stadnichenko AI et al (2021) In situ probing of Pt/TiO2 activity in low-temperature ammonia oxidation. Catal Sci Technol 11(1):250–263

    Article  Google Scholar 

  43. Stadnichenko A, Svintsitskiy D, Kibis L et al (2020) Influence of titania synthesized by pulsed laser ablation on the state of platinum during ammonia oxidation. Appl Sci 10(14):4699

    Article  Google Scholar 

  44. Vasilchenko D, Topchiyan P, Berdyugin S et al (2019) Tetraalkylammonium salts of platinum nitrato complexes: isolation, structure, and relevance to the preparation of PtOx/CeO2 catalysts for low-temperature CO oxidation. Inorg Chem 58(9):6075–6087

    Article  Google Scholar 

  45. Camacho R, González Huerta RG, Valenzuela MA et al (2011) Preparation and characterization of Pt/C and Pt/TiO2 electrocatalysts by liquid phase photodeposition. Top Catal 54(8):512–518

    Article  Google Scholar 

  46. Bertóti I, Mohai M, Sullivan JL et al (1995) Surface characterisation of plasma-nitrided titanium: an XPS study. Appl Surf Sci 84(4):357–371

    Article  Google Scholar 

  47. Siuzdak K, Sawczak M, Klein M et al (2014) Preparation of platinum modified titanium dioxide nanoparticles with the use of laser ablation in water. Phys Chem Chem Phys 16(29):15199–15206

    Article  Google Scholar 

  48. Biesinger MC, Lau LWM, Gerson AR et al (2010) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V. Cu and Zn Appl Surf Sci 257(3):887–898

    Article  Google Scholar 

  49. Moulder JF (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, Physical Electronics Division, Minnesota

    Google Scholar 

  50. Bugrova TA, Kharlamova TS, Svetlichnyi VA et al (2021) Insights into formation of Pt species in Pt/CeO2 catalysts: effect of treatment conditions and metal-support interaction. Catal Today 375:36–47

    Article  Google Scholar 

  51. Fadoni M, Lucarelli L (1999) Temperature programmed desorption, reduction, oxidation and flow chemisorption for the characterisation of heterogeneous catalysts. Theoretical aspects, instrumentation and applications. Studies in Surface Science and Catalysis. Amsterdam: Elsevier: pp 177–225

  52. Peuckert M, Bonzel HP (1984) Characterization of oxidized platinum surfaces by X-ray photoelectron spectroscopy. Surf Sci 145(1):239–259

    Article  Google Scholar 

  53. Ono LK, Croy JR, Heinrich H et al (2011) Oxygen chemisorption, formation, and thermal stability of Pt oxides on Pt nanoparticles supported on SiO2/Si(001):size effects. J Phys Chem C 115(34):16856–16866

    Article  Google Scholar 

  54. Svintsitskiy DA, Kibis LS, Stadnichenko AI et al (2015) Highly oxidized platinum nanoparticles prepared through radio-frequency sputtering: thermal stability and reaction probability towards CO. ChemPhysChem 16(15):3318–3324

    Article  Google Scholar 

  55. Escobedo Salas S, Serrano Rosales B, de Lasa H (2013) Quantum yield with platinum modified TiO2 photocatalyst for hydrogen production. Appl Catal B Environ 140–141:523–536

    Article  Google Scholar 

  56. Rivero MJ, Iglesias O, Ribao P et al (2019) Kinetic performance of TiO2/Pt/reduced graphene oxide composites in the photocatalytic hydrogen production. Int J Hydrog Energy 44(1):101–109

    Article  Google Scholar 

  57. Cha G, Hwang I, Hejazi S et al (2021) As a single atom Pd outperforms Pt as the most active co-catalyst for photocatalytic H2 evolution. iSci 24(8):102938

    Article  Google Scholar 

  58. Vasilchenko D, Berdugin S, Tkachev S et al (2015) Polynuclear hydroxido-bridged complexes of platinum(IV) with terminal nitrato ligands. Inorg Chem 54(10):4644–4651

    Article  Google Scholar 

  59. Krivec M, Dillert R, Bahnemann DW et al (2014) The nature of chlorine-inhibition of photocatalytic degradation of dichloroacetic acid in a TiO2-based microreactor. Phys Chem Chem Phys 16(28):14867–14873

    Article  Google Scholar 

  60. Brüninghoff R, van Duijne AK, Braakhuis L et al (2019) Comparative analysis of photocatalytic and electrochemical degradation of 4-ethylphenol in saline conditions. Environ Sci Technol 53(15):8725–8735

    Article  Google Scholar 

  61. Mais L, Palmas S, Mascia M et al (2021) Effect of potential and chlorides on photoelectrochemical removal of diethyl phthalate from water. Catalysts 11(8):882

    Article  Google Scholar 

  62. Pan CJ, Tsai MC, Su WN et al (2017) Tuning/exploiting Strong Metal-Support Interaction (SMSI) in Heterogeneous Catalysis. J Taiwan Inst Chem Eng 74:154–186

    Article  Google Scholar 

  63. Figueiredo WT, Prakash R, Vieira CG et al (2022) New insights on the electronic factor of the SMSI effect in Pd/TiO2 nanoparticles. Appl Surf Sci 574:151647

    Article  Google Scholar 

  64. Horsley JA (1979) A molecular orbital study of strong metal-support interaction between platinum and titanium dioxide. J Am Chem Soc 101(11):2870–2874

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. M. A. Salaev for the language review. The HR TEM experiments were carried out using the facilities of the shared research center “National Center of Investigation of Catalysts” at Boreskov Institute of Catalysis. This work was funded by the Russian Science Foundation (No. 19-73-30026).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. D. Fakhrutdinova or O. V. Vodyankina.

Ethics declarations

Conflicts of interest

All authors declare that there are no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1227 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakhrutdinova, E.D., Reutova, O.A., Bugrova, T.A. et al. Highly Defective Dark TiO2 Modified with Pt: Effects of Precursor Nature and Preparation Method on Photocatalytic Properties. Trans. Tianjin Univ. 30, 198–209 (2024). https://doi.org/10.1007/s12209-024-00388-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-024-00388-z

Keywords

Navigation