Skip to main content
Log in

Controllable NO Release for Catheter Antibacteria from Nitrite Electroreduction over the Cu-MOF

Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

Implant-associated infections caused by biomedical catheters severely threaten patientsʼ health. The use of electrochemical control on NO release from benign nitrite equipped in the catheter can potentially resolve this issue with excellent biocompatibility. Inspired by nitrite reductase, a Cu-BDC (BDC: benzene-1,4-dicarboxylic acid) catalyst with coordinated Cu(II) sites was constructed as a heterogeneous electrocatalyst to control nitrite reduction to nitric oxide for catheter antibacteria. The combined results of in situ and ex situ tests unveil the key function of interconversion between Cu(II) and Cu(I) species in NO2 reduction to NO. After being incorporated into the actual catheter, the Cu-BDC catalyst exhibits high electrocatalytic activity toward NO2 reduction to NO and excellent antibacteria efficacy with a sterilizing rate of 99.9%, paving the way for the development of advanced metal–organic frameworks (MOFs) electrocatalysts for catheter antibacteria.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Zowawi HM, Harris PNA, Roberts MJ et al (2015) The emerging threat of multidrug-resistant Gram-negative bacteria in urology. Nat Rev Urol 12(10):570–584

    Article  Google Scholar 

  2. Carpenter AW, Schoenfisch MH (2012) Nitric oxide release: part II. Therapeutic applications. Chem Soc Rev 41(10):3742–3752

    Article  Google Scholar 

  3. Gusarov I, Shatalin K, Starodubtseva M et al (2009) Endogenous nitric oxide protects bacteria against a wide spectrum of antibiotics. Science 325(5946):1380–1384

    Article  Google Scholar 

  4. Park J, Jin K, Sahasrabudhe A et al (2020) In situ electrochemical generation of nitric oxide for neuronal modulation. Nat Nanotechnol 15(8):690–697

    Article  Google Scholar 

  5. Hetrick EM, Shin JH, Paul HS et al (2009) Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles. Biomaterials 30(14):2782–2789

    Article  Google Scholar 

  6. Jin J, Mao JJ, Wu WJ, Jiang Y et al (2022) Highly efficient electrosynthesis of nitric oxide for biomedical applications. Angew Chem Int Ed 61(41):e202210980

    Article  Google Scholar 

  7. Frost MC, Rudich SM, Zhang HP et al (2003) In vivo biocompatibility and analytical performance of intravascular amperometric oxygen sensors prepared with improved nitric oxide-releasing silicone rubber coating. Anal Chem 75(4):1037

    Article  Google Scholar 

  8. Major TC, Brant DO, Reynolds MM et al (2010) The attenuation of platelet and monocyte activation in a rabbit model of extracorporeal circulation by a nitric oxide releasing polymer. Biomaterials 31(10):2736–2745

    Article  Google Scholar 

  9. Ren H, Wu JF, Xi CW et al (2014) Electrochemically modulated nitric oxide (NO) releasing biomedical devices via copper(II)-tri(2-pyridylmethyl)amine mediated reduction of nitrite. ACS Appl Mater Interfaces 6(6):3779–3783

    Article  Google Scholar 

  10. Long J, Chen SM, Zhang YL et al (2020) Direct electrochemical ammonia synthesis from nitric oxide. Angew Chemie Int Ed 59(24):9711–9718

    Article  Google Scholar 

  11. Wang T, Sun YM, Zhou Y et al (2018) Identifying influential parameters of octahedrally coordinated cations in spinel ZnMnxCo2-xO4 oxides for the oxidation reaction. ACS Catal 8(9):8568–8577

    Article  Google Scholar 

  12. Guo JX, Zheng Y, Hu ZP et al (2023) Direct seawater electrolysis by adjusting the local reaction environment of a catalyst. Nat Energy 8(3):264–272

    Google Scholar 

  13. Ding LC, Zhu NN, Hu Y et al (2022) Over 70 % faradaic efficiency for CO2 electroreduction to ethanol enabled by potassium dopant-tuned interaction between copper sites and intermediates. Angew Chem Int Ed 61(36):e202209268

    Article  Google Scholar 

  14. Wang ZC, Liu HL, Ge RX et al (2018) Phosphorus-doped Co3O4 nanowire array: a highly efficient bifunctional electrocatalyst for overall water splitting. ACS Catal 8(3):2236–2241

    Article  Google Scholar 

  15. Ren H, Colletta A, Koley D et al (2015) Thromboresistant/anti-biofilm catheters via electrochemically modulated nitric oxide release. Bioelectrochemistry 104:10–16

    Article  Google Scholar 

  16. Rose SL, Antonyuk SV, Sasaki D et al (2021) An unprecedented insight into the catalytic mechanism of copper nitrite reductase from atomic-resolution and damage-free structures. Sci Adv 7(1):eabd8523

    Article  Google Scholar 

  17. Tocheva EI, Rosell FI, Mauk AG et al (2004) Side-on copper-nitrosyl coordination by nitrite reductase. Science 304(5672):867–870

    Article  Google Scholar 

  18. Hunt AP, Batka AE, Hosseinzadeh M et al (2019) Nitric oxide generation on demand for biomedical applications via electrocatalytic nitrite reduction by copper BMPA- and BEPA-carboxylate complexes. ACS Catal 9(9):7746–7758

    Article  Google Scholar 

  19. Konopińska KK, Schmidt NJ, Hunt AP et al (2018) Comparison of copper(II)-ligand complexes as mediators for preparing electrochemically modulated nitric oxide-releasing catheters. ACS Appl Mater Interfaces 10(30):25047–25055

    Article  Google Scholar 

  20. White CJ, Lehnert N, Meyerhoff ME (2022) Electrochemical generation of nitric oxide for medical applications. Electrochem Sci Adv 2(5):e2100156

    Article  Google Scholar 

  21. Wang Q, Astruc D (2020) State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chem Rev 120(2):1438–1511

    Article  Google Scholar 

  22. Harding JL, Reynolds MM (2012) Metal organic frameworks as nitric oxide catalysts. J Am Chem Soc 134(7):3330–3333

    Article  Google Scholar 

  23. Rodenas T, Luz I, Prieto G et al (2015) Metal-organic framework nanosheets in polymer composite materials for gas separation. Nature Mater 14(1):48–55

    Article  Google Scholar 

  24. Carson CG, Brunnello G, Lee SG et al (2014) (2014) Structure solution from powder diffraction of copper 1, 4-benzenedicarboxylate. Eur J Inorg Chem 12:2140–2145

    Article  Google Scholar 

  25. Carson CG, Hardcastle K, Schwartz J et al (2009) Synthesis and structure characterization of copper terephthalate metal-organic frameworks. Eur J Inorg Chem 16:2338–2343

    Article  Google Scholar 

  26. Tan K, Nijem N, Canepa P et al (2012) Stability and hydrolyzation of metal organic frameworks with paddle-wheel SBUs upon hydration. Chem Mater 24(16):3153–3167

    Article  Google Scholar 

  27. Zhan GW, Fan LL, Zhao FG et al (2019) Fabrication of ultrathin 2D Cu-BDC nanosheets and the derived integrated MOF nanocomposites. Adv Funct Mater 29(9):1806720

    Article  Google Scholar 

  28. Deacon GB, Phillips RJ (1980) Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord Chem Rev 33(3):227–250

    Article  Google Scholar 

  29. Wang YT, Wang CH, Li MY et al (2021) Nitrate electroreduction: mechanism insight, in situ characterization, performance evaluation, and challenges. Chem Soc Rev 50(12):6720–6733

    Article  Google Scholar 

  30. Figueiredo MC, Solla-Gullón J, Vidal-Iglesias FJ et al (2013) Nitrate reduction at Pt(100) single crystals and preferentially oriented nanoparticles in neutral media. Catal Today 202:2–11

    Article  Google Scholar 

  31. da Cunha MCPM, De Souza JPI, Nart FC (2000) Reaction pathways for reduction of nitrate ions on platinum, rhodium, and platinum–rhodium alloy electrodes. Langmuir 16(2):771–777

    Article  Google Scholar 

  32. Duca M, Figueiredo MC, Climent V et al (2011) Selective catalytic reduction at quasi-perfect Pt(100) domains: a universal low-temperature pathway from nitrite to N2. J Am Chem Soc 133(28):10928–10939

    Article  Google Scholar 

  33. Zhou XL, Dong JC, Zhu YH et al (2021) Molecular scalpel to chemically cleave metal-organic frameworks for induced phase transition. J Am Chem Soc 143(17):6681–6690

    Article  Google Scholar 

  34. Zhao YR, Chang XX, Malkani AS et al (2020) Speciation of Cu surfaces during the electrochemical CO reduction reaction. J Am Chem Soc 142:jacs.0c02354

    Article  Google Scholar 

  35. Xu CC, Vasileff A, Jin B et al (2020) Graphene-encapsulated nickel-copper bimetallic nanoparticle catalysts for electrochemical reduction of CO2 to CO. Chem Commun 56(76):11275–11278

    Article  Google Scholar 

  36. Dai CC, Sun LB, Song JJ et al (2019) Selective electroreduction of carbon dioxide to formic acid on cobalt-decorated copper thin films. Small Methods 3(11):1900362

    Article  Google Scholar 

  37. Chen FY, Wu ZY, Gupta S et al (2022) Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nat Nanotechnol 17(7):759–767

    Article  Google Scholar 

  38. Cioncoloni G, Roger I, Wheatley PS et al (2018) Proton-coupled electron transfer enhances the electrocatalytic reduction of nitrite to NO in a bioinspired copper complex. ACS Catal 8(6):5070–5084

    Article  Google Scholar 

  39. Vaughn MW, Kuo L, Liao JC (1998) Estimation of nitric oxide production and reactionrates in tissue by use of a mathematical model. Am J Physiol Heart Circ Physiol 274(6):H2163–H2176

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the financial support from National Postdoctoral Science Foundation of China (Nos. 2021M702436 and BX2021211); Haihe Laboratory of Sustainable Chemical Transformations; National Natural Science Foundation of China (Nos. 22101202 and 22071173); Tianjin Science and Technology Programme (Nos. 20JCJQJC00050 and 22ZYJDSS00060).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuting Wang, Meiting Zhao or Yifu Yu.

Ethics declarations

Conflict of interest

All authors declare that there are no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 792 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Qin, Y., Li, W. et al. Controllable NO Release for Catheter Antibacteria from Nitrite Electroreduction over the Cu-MOF. Trans. Tianjin Univ. 29, 275–283 (2023). https://doi.org/10.1007/s12209-023-00359-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-023-00359-w

Keywords

Navigation